
Zebra - User’s Guide and Reference

Adam Dickmeiss, Heikki Levanto, Marc Cromme, Mike Taylor, and
Sebastian Hammer

Copyright © 1994-2023 Index Data

Zebra - User’s Guide and Reference iii

COLLABORATORS

TITLE :

Zebra - User’s Guide and Reference

ACTION NAME DATE SIGNATURE

WRITTEN BY Adam Dickmeiss,
Heikki Levanto,
Marc Cromme,

Mike Taylor, and
Sebastian
Hammer

January 13, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Zebra - User’s Guide and Reference v

Contents

1 Introduction 1
1.1 Overview . 1

1.2 Zebra Features Overview . 2

1.2.1 Zebra Document Model . 2

1.2.2 Zebra Search Features . 2

1.2.3 Zebra Index Scanning . 2

1.2.4 Zebra Document Presentation . 2

1.2.5 Zebra Sorting and Ranking . 2

1.2.6 Zebra Live Updates . 2

1.2.7 Zebra Networked Protocols . 2

1.2.8 Zebra Data Size and Scalability . 2

1.2.9 Zebra Supported Platforms . 2

1.3 References and Zebra based Applications . 2

1.3.1 Koha free open-source ILS . 4

1.3.2 Kete Open Source Digital Library and Archiving software 9

1.3.3 ReIndex.Net web based ILS . 9

1.3.4 DADS - the DTV Article Database Service . 9

1.3.5 ULS (Union List of Serials) . 9

1.3.6 Various web indexes . 10

1.4 Support . 10

2 Installation 11
2.1 UNIX . 11

2.2 GNU/Debian . 12

2.2.1 GNU/Debian Linux on amd64/i386 Platform . 12

2.2.2 GNU/Debian and Ubuntu on other architectures 13

2.3 Windows . 13

2.4 Upgrading from Zebra version 1.3.x . 14

3 Tutorial 17

3.1 A first OAI indexing example . 17

3.2 Searching the OAI database by web service . 18

3.3 Presenting search results in different formats . 18

3.4 More interesting searches . 19

3.5 Investigating the content of the indexes . 20

3.6 Setting up a correct SRU web service . 20

3.7 Searching the OAI database by Z39.50 protocol . 21

4 Overview of Zebra Architecture 25

4.1 Local Representation . 25

4.2 Main Components . 25

4.2.1 Core Zebra Libraries Containing Common Functionality 25

4.2.2 Zebra Indexer . 26

4.2.3 Zebra Searcher/Retriever . 26

4.2.4 YAZ Server Frontend . 26

4.2.5 Record Models and Filter Modules . 27

4.2.5.1 DOM XML Record Model and Filter Module 27

4.2.5.2 ALVIS XML Record Model and Filter Module 27

4.2.5.3 GRS-1 Record Model and Filter Modules 28

4.2.5.4 TEXT Record Model and Filter Module 28

4.3 Indexing and Retrieval Workflow . 28

4.4 Retrieval of Zebra internal record data . 29

5 Query Model 33

5.1 Query Model Overview . 33

5.1.1 Query Languages . 33

5.1.1.1 Prefix Query Format (PQF) . 33

5.1.1.2 Common Query Language (CQL) . 33

5.1.2 Operation types . 33

5.1.2.1 Explain Operation . 34

5.1.2.2 Search Operation . 34

5.1.2.3 Scan Operation . 34

5.2 RPN queries and semantics . 34

5.2.1 RPN tree structure . 34

Zebra - User’s Guide and Reference vii

5.2.1.1 Attribute sets . 35

5.2.1.2 Boolean operators . 35

5.2.1.3 Atomic queries (APT) . 36

5.2.1.4 Named Result Sets . 37

5.2.1.5 Zebra’s special access point of type ’string’ 38

5.2.1.6 Zebra’s special access point of type ’XPath’ for GRS-1 filters 38

5.2.2 Explain Attribute Set . 40

5.2.2.1 Use Attributes (type = 1) . 40

5.2.2.2 Explain searches with yaz-client . 40

5.2.3 BIB-1 Attribute Set . 41

5.2.3.1 Use Attributes (type 1) . 41

5.2.4 Zebra general Bib1 Non-Use Attributes (type 2-6) 42

5.2.4.1 Relation Attributes (type 2) . 42

5.2.4.2 Position Attributes (type 3) . 43

5.2.4.3 Structure Attributes (type 4) . 44

5.2.4.4 Truncation Attributes (type = 5) . 45

5.2.4.5 Completeness Attributes (type = 6) . 46

5.3 Extended Zebra RPN Features . 47

5.3.1 Zebra specific retrieval of all records . 47

5.3.2 Zebra specific Search Extensions to all Attribute Sets 48

5.3.2.1 Zebra Extension Embedded Sort Attribute (type 7) 48

5.3.2.2 Zebra Extension Rank Weight Attribute (type 9) 49

5.3.2.3 Zebra Extension Term Reference Attribute (type 10) 49

5.3.2.4 Local Approximative Limit Attribute (type 11) 49

5.3.2.5 Global Approximative Limit Attribute (type 12) 50

5.3.3 Zebra specific Scan Extensions to all Attribute Sets 50

5.3.3.1 Zebra Extension Result Set Narrow (type 8) 50

5.3.3.2 Zebra Extension Approximative Limit (type 12) 51

5.3.4 Zebra special IDXPATH Attribute Set for GRS-1 indexing 51

5.3.4.1 IDXPATH Use Attributes (type = 1) 51

5.3.5 Mapping from PQF atomic APT queries to Zebra internal register indexes 52

5.3.5.1 Mapping of PQF APT access points 53

5.3.5.2 Mapping of PQF APT structure and completeness to register type 54

5.3.6 Zebra Regular Expressions in Truncation Attribute (type = 5) 56

5.4 Server Side CQL to PQF Query Translation . 57

6 Administrating Zebra 59

6.1 Record Types . 59

6.2 The Zebra Configuration File . 60

6.3 Locating Records . 62

6.4 Indexing with no Record IDs (Simple Indexing) . 62

6.5 Indexing with File Record IDs . 63

6.6 Indexing with General Record IDs . 64

6.7 Register Location . 65

6.8 Safe Updating - Using Shadow Registers . 65

6.8.1 Description . 65

6.8.2 How to Use Shadow Register Files . 66

6.9 Relevance Ranking and Sorting of Result Sets . 67

6.9.1 Overview . 67

6.9.2 Static Ranking . 67

6.9.3 Dynamic Ranking . 68

6.9.3.1 Dynamically ranking using PQF queries with the ’rank-1’ algorithm . . 68

6.9.3.2 Dynamically ranking CQL queries . 70

6.9.4 Sorting . 70

6.10 Extended Services: Remote Insert, Update and Delete . 71

6.10.1 Extended services in the Z39.50 protocol . 72

6.10.2 Extended services from yaz-client . 74

6.10.3 Extended services from yaz-php . 75

6.10.4 Extended services debugging guide . 75

7 DOM XML Record Model and Filter Module 77

7.1 DOM Record Filter Architecture . 77

7.2 DOM XML filter pipeline configuration . 78

7.2.1 Input pipeline . 80

7.2.2 Extract pipeline . 80

7.2.3 Store pipeline . 80

7.2.4 Retrieve pipeline . 80

7.2.5 Canonical Indexing Format . 81

7.2.5.1 Processing-instruction governed indexing format 81

7.2.5.2 Magic element governed indexing format 81

Zebra - User’s Guide and Reference ix

7.2.5.3 Semantics of the indexing formats . 82

7.3 DOM Record Model Configuration . 84

7.3.1 DOM Indexing Configuration . 84

7.3.2 DOM Indexing MARCXML . 85

7.3.3 DOM Indexing Wizardry . 87

7.3.4 Debuggig DOM Filter Configurations . 88

8 ALVIS XML Record Model and Filter Module 89

8.1 ALVIS Record Filter . 89

8.1.1 ALVIS Internal Record Representation . 90

8.1.2 ALVIS Canonical Indexing Format . 90

8.2 ALVIS Record Model Configuration . 92

8.2.1 ALVIS Indexing Configuration . 92

8.2.2 ALVIS Exchange Formats . 94

8.2.3 ALVIS Filter OAI Indexing Example . 95

9 GRS-1 Record Model and Filter Modules 97

9.1 GRS-1 Record Filters . 97

9.1.1 GRS-1 Canonical Input Format . 98

9.1.1.1 Record Root . 98

9.1.1.2 Variants . 99

9.1.2 GRS-1 REGX And TCL Input Filters . 100

9.2 GRS-1 Internal Record Representation . 101

9.2.1 Tagged Elements . 102

9.2.2 Variants . 102

9.2.3 Data Elements . 102

9.3 GRS-1 Record Model Configuration . 103

9.3.1 The Abstract Syntax . 103

9.3.2 The Configuration Files . 103

9.3.3 The Abstract Syntax (.abs) Files . 104

9.3.4 The Attribute Set (.att) Files . 106

9.3.5 The Tag Set (.tag) Files . 107

9.3.6 The Variant Set (.var) Files . 108

9.3.7 The Element Set (.est) Files . 109

9.3.8 The Schema Mapping (.map) Files . 110

9.3.9 The MARC (ISO2709) Representation (.mar) Files 110

9.4 GRS-1 Exchange Formats . 111

9.5 Extended indexing of MARC records . 111

9.5.1 The index-formula . 112

9.5.2 Notation of index-formula for Zebra . 113

9.5.2.1 Examples . 114

10 Field Structure and Character Sets 115
10.1 The default.idx file . 115

10.2 Charmap Files . 117

10.3 ICU Chain Files . 120

11 Reference 121
11.1 zebraidx . 121

11.2 zebrasrv . 123

11.3 idzebra-config . 132

11.4 idzebra-abs2dom . 133

A License 135

B GNU General Public License 137
B.1 Preamble . 137

B.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 138

B.2.1 Section 0 . 138

B.2.2 Section 1 . 138

B.2.3 Section 2 . 138

B.2.4 Section 3 . 139

B.2.5 Section 4 . 140

B.2.6 Section 5 . 140

B.2.7 Section 6 . 140

B.2.8 Section 7 . 140

B.2.9 Section 8 . 141

B.2.10 Section 9 . 141

B.2.11 Section 10 . 141

B.2.12 NO WARRANTY Section 11 . 141

B.2.13 Section 12 . 141

B.3 How to Apply These Terms to Your New Programs . 142

C About Index Data and the Zebra Server 143

Zebra - User’s Guide and Reference xi

List of Figures

7.1 DOM XML filter architecture . 78

Zebra - User’s Guide and Reference xiii

List of Tables

1.1 Zebra document model . 2

1.2 Zebra search functionality . 3

1.3 Zebra index scanning . 4

1.4 Zebra document presentation . 5

1.5 Zebra sorting and ranking . 6

1.6 Zebra live updates . 6

1.7 Zebra networked protocols . 7

1.8 Zebra data size and scalability . 8

1.9 Zebra supported platforms . 8

4.1 Special Retrieval Elements . 29

5.1 Attribute sets predefined in Zebra . 35

5.2 Boolean operators . 36

5.3 Atomic queries (APT) . 37

5.4 Relation Attributes (type 2) . 42

5.5 Position Attributes (type 3) . 43

5.6 Structure Attributes (type 4) . 44

5.7 Truncation Attributes (type 5) . 45

5.8 Completeness Attributes (type = 6) . 47

5.9 Zebra Search Attribute Extensions . 48

5.10 Zebra Scan Attribute Extensions . 50

5.11 Zebra specific IDXPATH Use Attributes (type 1) . 52

5.12 Access point name mapping . 53

5.13 Structure and completeness mapping to register types . 55

5.14 Regular Expression Operands . 56

5.15 Regular Expression Operators . 56

6.1 Extended services Z39.50 Package Fields . 73

7.1 DOM XML filter pipelines overview . 79

10.1 Character maps predefined in Zebra . 117

Abstract

Zebra is a free, fast, friendly information management system. It can index records in XML, SGML,
MARC, e-mail archives and many other formats, and quickly find them using a combination of boolean
searching and relevance ranking. Search-and-retrieve applications can be written using APIs in a wide
variety of languages, communicating with the Zebra server using industry-standard information-retrieval
protocols or web services.

This manual explains how to build and install Zebra, configure it appropriately for your application, add
data and set up a running information service. It describes version 2.2.7 of Zebra.

Zebra - User’s Guide and Reference 1 / 143

Chapter 1

Introduction

1.1 Overview

Zebra is a free, fast, friendly information management system. It can index records in XML/SGML, MARC,
e-mail archives and many other formats, and quickly find them using a combination of boolean searching
and relevance ranking. Search-and-retrieve applications can be written using APIs in a wide variety of
languages, communicating with the Zebra server using industry-standard information-retrieval protocols or
web services.

Zebra is licensed Open Source, and can be deployed by anyone for any purpose without license fees. The
C source code is open to anybody to read and change under the GPL license.

Zebra is a networked component which acts as a reliable Z39.50 server for both record/document search,
presentation, insert, update and delete operations. In addition, it understands the SRU family of webser-
vices, which exist in REST GET/POST and truly SOAP flavors.

Zebra is available as MS Windows 2003 Server (32 bit) self-extracting package as well as GNU/Debian
Linux (32 bit and 64 bit) precompiled packages. It has been deployed successfully on other Unix systems,
including Sun Sparc, HP Unix, and many variants of Linux and BSD based systems.

http://www.indexdata.com/zebra/ http://ftp.indexdata.dk/pub/zebra/win32/ http://ftp.indexdata.dk/pub/zebra/-
debian/

Zebra is a high-performance, general-purpose structured text indexing and retrieval engine. It reads records
in a variety of input formats (e.g. email, XML, MARC) and provides access to them through a powerful
combination of boolean search expressions and relevance-ranked free-text queries.

Zebra supports large databases (tens of millions of records, tens of gigabytes of data). It allows safe,
incremental database updates on live systems. Because Zebra supports the industry-standard information
retrieval protocol, Z39.50, you can search Zebra databases using an enormous variety of programs and
toolkits, both commercial and free, which understand this protocol. Application libraries are available to
allow bespoke clients to be written in Perl, C, C++, Java, Tcl, Visual Basic, Python, PHP and more - see the
ZOOM web site for more information on some of these client toolkits.

This document is an introduction to the Zebra system. It explains how to compile the software, how to
prepare your first database, and how to configure the server to give you the functionality that you need.

http://www.indexdata.com/zebra/
http://ftp.indexdata.dk/pub/zebra/win32/
http://ftp.indexdata.dk/pub/zebra/debian/
http://ftp.indexdata.dk/pub/zebra/debian/
http://indexdata.dk/zebra/
http://zoom.z3950.org/

1.2 Zebra Features Overview

1.2.1 Zebra Document Model

Feature Availability Notes Reference
Complex
semi-
structured
Documents

XML and
GRS-1
Documents

Both XML and GRS-1 documents
exhibit a DOM like internal
representation allowing for complex
indexing and display rules

Chapter 8 and Chapter 9

Input
document
formats

XML,
SGML, Text,
ISO2709
(MARC)

A system of input filters driven by
regular expressions allows most
ASCII-based data formats to be easily
processed. SGML, XML, ISO2709
(MARC), and raw text are also
supported.

Section 4.2.5

Document
storage

Index-only,
Key storage,
Document
storage

Data can be, and usually is, imported
into Zebra’s own storage, but Zebra can
also refer to external files, building and
maintaining indexes of "live"
collections.

Table 1.1: Zebra document model

1.2.2 Zebra Search Features

1.2.3 Zebra Index Scanning

1.2.4 Zebra Document Presentation

1.2.5 Zebra Sorting and Ranking

1.2.6 Zebra Live Updates

1.2.7 Zebra Networked Protocols

1.2.8 Zebra Data Size and Scalability

1.2.9 Zebra Supported Platforms

1.3 References and Zebra based Applications

Zebra has been deployed in numerous applications, in both the academic and commercial worlds, in ap-
plication domains as diverse as bibliographic catalogues, Geo-spatial information, structured vocabulary

Zebra - User’s Guide and Reference 3 / 143

Feature Availability Notes Reference

Query
languages

CQL and
RPN/PQF

The type-1 Reverse Polish Notation
(RPN) and its textual representation
Prefix Query Format (PQF) are
supported. The Common Query
Language (CQL) can be configured as a
mapping from CQL to RPN/PQF

Section 5.1.1.1 and
Section 5.4

Complex
boolean
query tree

CQL and
RPN/PQF

Both CQL and RPN/PQF allow atomic
query parts (APT) to be combined into
complex boolean query trees

Section 5.2.1

Field search user defined
Atomic query parts (APT) are either
general, or directed at user-specified
document fields

Section 5.2.1.3,
Section 5.2.1.5,
Section 5.2.3.1, and
Section 5.3.4.1

Data normal-
ization

user defined
Data normalization, text tokenization
and character mappings can be applied
during indexing and searching

Chapter 10

Predefined
field types

user defined

Data fields can be indexed as phrase, as
into word tokenized text, as numeric
values, URLs, dates, and raw binary
data.

Section 10.2 and
Section 5.3.5.2

Regular
expression
matching

available
Full regular expression matching and
"approximate matching" (e.g. spelling
mistake corrections) are handled.

Section 5.3.6

Term
truncation

left, right,
left-and-right

The truncation attribute specifies
whether variations of one or more
characters are allowed between search
term and hit terms, or not. Using
non-default truncation attributes will
broaden the document hit set of a search
query.

Section 5.2.4.4

Fuzzy
searches

Spelling
correction

In addition, fuzzy searches are
implemented, where one spelling
mistake in search terms is matched

Section 5.2.4.4

Table 1.2: Zebra search functionality

Feature Availability Notes Reference

Scan
term
suggestions

Scan on a given named index returns
all the indexed terms in lexicographical
order near the given start term. This can
be used to create drop-down menus and
search suggestions.

Section 5.1.2.3 and
Section 5.2.1.3

Facetted
browsing

available
Zebra 2.1 and allows retrieval of facets
for a result set.

Section 5.3.3

Drill-down
or
refine-search

partially
scanning in result sets can be used to
implement drill-down in search clients

Section 5.3.3

Table 1.3: Zebra index scanning

browsing, government information locators, civic information systems, environmental observations, mu-
seum information and web indexes.

Notable applications include the following:

1.3.1 Koha free open-source ILS

Koha is a full-featured open-source ILS, initially developed in New Zealand by Katipo Communications
Ltd, and first deployed in January of 2000 for Horowhenua Library Trust. It is currently maintained by a
team of software providers and library technology staff from around the globe.

LibLime, a company that is marketing and supporting Koha, adds in the new release of Koha 3.0 the Zebra
database server to drive its bibliographic database.

In early 2005, the Koha project development team began looking at ways to improve MARC support and
overcome scalability limitations in the Koha 2.x series. After extensive evaluations of the best of the Open
Source textual database engines - including MySQL full-text searching, PostgreSQL, Lucene and Plucene
- the team selected Zebra.

"Zebra completely eliminates scalability limitations, because it can support tens of millions of records."
explained Joshua Ferraro, LibLime’s Technology President and Koha’s Project Release Manager. "Our
performance tests showed search results in under a second for databases with over 5 million records on a
modest i386 900Mhz test server."

"Zebra also includes support for true boolean search expressions and relevance-ranked free-text queries,
both of which the Koha 2.x series lack. Zebra also supports incremental and safe database updates, which
allow on-the-fly record management. Finally, since Zebra has at its heart the Z39.50 protocol, it greatly
improves Koha’s support for that critical library standard."

Although the bibliographic database will be moved to Zebra, Koha 3.0 will continue to use a relational
SQL-based database design for the ’factual’ database. "Relational database managers have their strengths,
in spite of their inability to handle large numbers of bibliographic records efficiently," summed up Ferraro,
"We’re taking the best from both worlds in our redesigned Koha 3.0.

See also LibLime’s newsletter article Koha Earns its Stripes.

http://www.koha.org/
http://liblime.com/
http://www.liblime.com/newsletter/2006/01/features/koha-earns-its-stripes/

Zebra - User’s Guide and Reference 5 / 143

Feature Availability Notes Reference

Hit count yes

Search results include at any time the
total hit count of a given query, either
exact computed, or approximative, in
case that the hit count exceeds a
possible pre-defined hit set truncation
level.

Section 5.3.2.4 and
Section 6.2

Paged result
sets

yes

Paging of search requests and
present/display request can return any
successive number of records from any
start position in the hit set, i.e. it is
trivial to provide search results in
successive pages of any size.

XML
document
transforma-
tions

XSLT based

Record presentation can be performed
in many pre-defined XML data formats,
where the original XML records are
on-the-fly transformed through any
preconfigured XSLT transformation. It
is therefore trivial to present records in
short/full XML views, transforming to
RSS, Dublin Core, or other XML based
data formats, or transform records to
XHTML snippets ready for inserting in
XHTML pages.

Section 8.2.2

Binary
record trans-
formations

MARC,
USMARC,
MARC21
and
MARCXML

post-filter record transformations

Record
Syntaxes

Multiple record syntaxes for data
retrieval: GRS-1, SUTRS, XML,
ISO2709 (MARC), etc. Records can be
mapped between record syntaxes and
schemas on the fly.

Zebra
internal
metadata

yes

Zebra internal document metadata can
be fetched in SUTRS and XML record
syntaxes. Those are useful in client
applications.

Section 4.4

Zebra
internal raw
record data

yes

Zebra internal raw, binary record data
can be fetched in SUTRS and XML
record syntaxes, leveraging %zebra; to a
binary storage system

Section 4.4

Zebra
internal
record field
data

yes

Zebra internal record field data can be
fetched in SUTRS and XML record
syntaxes. This makes very fast minimal
record data displays possible.

Section 4.4

Table 1.4: Zebra document presentation

Feature Availability Notes Reference

Sort
numeric, lex-
icographic

Sorting on the basis of alpha-numeric
and numeric data is supported.
Alphanumeric sorts can be configured
for different data encodings and locales
for European languages.

Section 6.9.4 and
Section 5.3.2.1

Combined
sorting

yes

Sorting on the basis of combined sorts
e.g. combinations of
ascending/descending sorts of
lexicographical/numeric/date field data
is supported

Section 6.9.4

Relevance
ranking

TF-IDF like
Relevance-ranking of free-text queries
is supported using a TF-IDF like
algorithm.

Section 6.9.3

Static
pre-ranking

yes

Enables pre-index time ranking of
documents where hit lists are ordered
first by ascending static rank, then by
ascending document ID.

Section 6.9.2

Table 1.5: Zebra sorting and ranking

Feature Availability Notes Reference

Incremental
and batch
updates

It is possible to schedule record
inserts/updates/deletes in any quantity,
from single individual handled records
to batch updates in strikes of any size,
as well as total re-indexing of all
records from file system.

zebraidx(1)

Remote
updates

Z39.50
extended
services

Updates can be performed from remote
locations using the Z39.50 extended
services. Access to extended services
can be login-password protected.

Section 6.10 and
Section 6.2

Live updates
transaction
based

Data updates are transaction based and
can be performed on running Zebra
systems. Full searchability is preserved
during life data update due to use of
shadow disk areas for update
operations. Multiple update transactions
at the same time are lined up, to be
performed one after each other. Data
integrity is preserved.

Section 6.8

Table 1.6: Zebra live updates

Zebra - User’s Guide and Reference 7 / 143

Feature Availability Notes Reference

Fundamental
operations

Z39.50/SRU
explain,
search,
scan, and
update

Section 5.1.2

Z39.50
protocol
support

yes

Protocol facilities supported are: init,
search, present (retrieval),
Segmentation (support for very large
records), delete, scan (index
browsing), sort, close and support
for the update Extended Service to
add or replace an existing XML record.
Piggy-backed presents are honored in
the search request. Named result sets
are supported.

the section called “Z39.50
Protocol Support and
Behavior”

Web Service
support

SRU

The protocol operations explain,
searchRetrieve and scan are
supported. CQL to internal query model
RPN conversion is supported. Extended
RPN queries for search/retrieve and
scan are supported.

the section called “SRU
Protocol Support and
Behavior”

Table 1.7: Zebra networked protocols

http://www.loc.gov/standards/sru/cql/

Feature Availability Notes Reference
No of
records

40-60
million

Data size
100 GB of
record data

Zebra based applications have
successfully indexed up to 100 GB of
record data

Scale out
multiple
discs

Performance
O(n *
log N)

Zebra query speed and performance is
affected roughly by O(log N), where
N is the total database size, and by
O(n), where n is the specific query hit
set size.

Average
search times

Even on very large size databases hit
rates of 20 queries per seconds with
average query answering time of 1
second are possible, provided that the
boolean queries are constructed
sufficiently precise to result in hit sets of
the order of 1000 to 5.000 documents.

Large
databases

64 bit file
pointers

64 file pointers assure that register files
can extend the 2 GB limit. Logical files
can be automatically partitioned over
multiple disks, thus allowing for large
databases.

Table 1.8: Zebra data size and scalability

Feature Availability Notes Reference

Linux

GNU Linux (32 and 64bit), journaling
Reiser or (better) JFS file system on
disks. NFS file systems are not
supported. GNU/Debian Linux
packages are available

Section 2.2

Unix tar-ball

Zebra is written in portable C, so it runs
on most Unix-like systems. Usual
tar-ball install possible on many major
Unix systems

Section 2.1

Windows NT/2000/2003/XP
Zebra runs as well on Windows
(NT/2000/2003/XP). Windows installer
packages available

Section 2.3

Table 1.9: Zebra supported platforms

Zebra - User’s Guide and Reference 9 / 143

1.3.2 Kete Open Source Digital Library and Archiving software

Kete is a digital object management repository, initially developed in New Zealand. Initial development has
been a partnership between the Horowhenua Library Trust and Katipo Communications Ltd. funded as part
of the Community Partnership Fund in 2006. Kete is purpose built software to enable communities to build
their own digital libraries, archives and repositories.

It is based on Ruby-on-Rails and MySQL, and integrates the Zebra server and the YAZ toolkit for indexing
and retrieval of it’s content. Zebra is run as separate computer process from the Kete application. See how
Kete manages Zebra.

Why does Kete wants to use Zebra?? Speed, Scalability and easy integration with Koha. Read their detailed
reasoning here.

1.3.3 ReIndex.Net web based ILS

Reindex.net is a netbased library service offering all traditional functions on a very high level plus many
new services. Reindex.net is a comprehensive and powerful WEB system based on standards such as XML
and Z39.50. updates. Reindex supports MARC21, danMARC eller Dublin Core with UTF8-encoding.

Reindex.net runs on GNU/Debian Linux with Zebra and Simpleserver from Index Data for bibliographic
data. The relational database system Sybase 9 XML is used for administrative data. Internally MARCXML
is used for bibliographical records. Update utilizes Z39.50 extended services.

1.3.4 DADS - the DTV Article Database Service

DADS is a huge database of more than ten million records, totalling over ten gigabytes of data. The records
are metadata about academic journal articles, primarily scientific; about 10% of these metadata records link
to the full text of the articles they describe, a body of about a terabyte of information (although the full text
is not indexed.)

It allows students and researchers at DTU (Danmarks Tekniske Universitet, the Technical College of Den-
mark) to find and order articles from multiple databases in a single query. The database contains literature
on all engineering subjects. It’s available on-line through a web gateway, though currently only to registered
users.

More information can be found at http://www.dtic.dtu.dk/ and http://dads.dtv.dk

1.3.5 ULS (Union List of Serials)

The M25 Systems Team has created a union catalogue for the periodicals of the twenty-one constituent li-
braries of the University of London and the University of Westminster (http://www.m25lib.ac.uk/
ULS/). They have achieved this using an unusual architecture, which they describe as a ``non-distributed
virtual union catalogue”.

The member libraries send in data files representing their periodicals, including both brief bibliographic data
and summary holdings. Then 21 individual Z39.50 targets are created, each using Zebra, and all mounted
on the single hardware server. The live service provides a web gateway allowing Z39.50 searching of all of

http://kete.net.nz/
http://kete.net.nz/documentation/topics/show/139-managing-zebra
http://kete.net.nz/blog/topics/show/44-who-what-why-when-answering-some-of-the-niggly-development-questions
http://kete.net.nz/blog/topics/show/44-who-what-why-when-answering-some-of-the-niggly-development-questions
http://www.reindex.net/index.php?lang=en
http://www.dtic.dtu.dk/
http://dads.dtv.dk
http://www.m25lib.ac.uk/ULS/
http://www.m25lib.ac.uk/ULS/

the targets or a selection of them. Zebra’s small footprint allows a relatively modest system to comfortably
host the 21 servers.

More information can be found at http://www.m25lib.ac.uk/ULS/

1.3.6 Various web indexes

Zebra has been used by a variety of institutions to construct indexes of large web sites, typically in the
region of tens of millions of pages. In this role, it functions somewhat similarly to the engine of Google or
AltaVista, but for a selected intranet or a subset of the whole Web.

For example, Liverpool University’s web-search facility (see on the home page at http://www.liv.
ac.uk/ and many sub-pages) works by relevance-searching a Zebra database which is populated by the
Harvest-NG web-crawling software.

For more information on Liverpool university’s intranet search architecture, contact John Gilbertson jgilbert@liverpool.ac.uk

Kang-Jin Lee has recently modified the Harvest web indexer to use Zebra as its native repository engine.
His comments on the switch over from the old engine are revealing:

The first results after some testing with Zebra are very promising. The tests were done with
around 220,000 SOIF files, which occupies 1.6GB of disk space.

Building the index from scratch takes around one hour with Zebra where [old-engine] needs
around five hours. While [old-engine] blocks search requests when updating its index, Zebra
can still answer search requests. [...] Zebra supports incremental indexing which will speed up
indexing even further.

While the search time of [old-engine] varies from some seconds to some minutes depending
how expensive the query is, Zebra usually takes around one to three seconds, even for expensive
queries. [...] Zebra can search more than 100 times faster than [old-engine] and can process
multiple search requests simultaneously

I am very happy to see such nice software available under GPL.

1.4 Support

You can get support for Zebra from at least three sources.

First, there’s the Zebra web site at http://www.indexdata.com/zebra, which always has the most
recent version available for download. If you have a problem with Zebra, the first thing to do is see whether
it’s fixed in the current release.

Second, there’s the Zebra mailing list. Its home page at http://lists.indexdata.dk/cgi-bin/
mailman/listinfo/zebralist includes a complete archive of all messages that have ever been
posted on the list. The Zebra mailing list is used both for announcements from the authors (new releases,
bug fixes, etc.) and general discussion. You are welcome to seek support there. Join by filling the form on
the list home page.

http://www.m25lib.ac.uk/ULS/
http://www.liv.ac.uk/
http://www.liv.ac.uk/
mailto:jgilbert@liverpool.ac.uk
http://www.indexdata.com/zebra
http://lists.indexdata.dk/cgi-bin/mailman/listinfo/zebralist
http://lists.indexdata.dk/cgi-bin/mailman/listinfo/zebralist

Zebra - User’s Guide and Reference 11 / 143

Chapter 2

Installation

Zebra is written in ANSI C and was implemented with portability in mind. We primarily use GCC on UNIX
and Microsoft Visual C++ on Windows.

The software is regularly tested on Debian GNU/Linux, Red Hat Linux, FreeBSD (i386), MAC OSX,
Windows 7.

Zebra can be configured to use the following utilities (most of which are optional):

YAZ (required) Zebra uses YAZ to support Z39.50 / SRU. Zebra also uses a lot of other utilities (not
related to networking), such as memory management and XML support.

For the DOM XML / ALVIS record filters, YAZ must be compiled with Libxml2 and Libxslt support
and Libxml2 must be version 2.6.15 or later.

iconv (optional) Character set conversion. This is required if you’re going to use any other character set
than UTF-8 and ISO-8859-1 for records. Note that some Unixes has iconv built-in.

Expat (optional) XML parser. If you’re going to index real XML you should install this (filter grs.xml).
On most systems you should be able to find binary Expat packages.

Tcl (optional) Tcl is required if you need to use the Tcl record filter for Zebra. You can find binary
packages for Tcl for many Unices and Windows.

Autoconf, Automake (optional) GNU Automake and Autoconf are only required if you’re using the CVS
version of Zebra. You do not need these if you have fetched a Zebra tar.

Docbook and friends (optional) These tools are only required if you’re writing documentation for Ze-
bra. You need the following Debian packages: docbook, docbook-xml, docbook-xsl, docbook-utils,
xsltproc.

2.1 UNIX

On Unix, GCC works fine, but any native C compiler should be possible to use as long as it is ANSI C
compliant.

http://gcc.gnu.org
http://www.visualstudio.com
https://www.debian.org/
https://www.redhat.com/
https://www.freebsd.org/
https://www.apple.com/osx/
http://www.indexdata.com/yaz
https://www.loc.gov/z3950/agency/
https://www.loc.gov/standards/sru/
http://xmlsoft.org/
http://xmlsoft.org/XSLT/
https://www.gnu.org/software/libiconv/
https://libexpat.github.io
http://www.tcl.tk/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/
https://docbook.org

Unpack the distribution archive. The configure shell script attempts to guess correct values for various
system-dependent variables used during compilation. It uses those values to create a Makefile in each
directory of Zebra.

To run the configure script type:

./configure

The configure script attempts to use C compiler specified by the CC environment variable. If this is not
set, cc or GNU C will be used. The CFLAGS environment variable holds options to be passed to the C
compiler. If you’re using a Bourne-shell compatible shell you may pass something like this:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

The configure script support various options: you can see what they are with

./configure --help

Once the build environment is configured, build the software by typing:

make

If the build is successful, two executables are created in the sub-directory index:

zebrasrv The Z39.50 server and search engine.

zebraidx The administrative indexing tool.

index/*.so The .so-files are Zebra record filter modules. There are modules for reading MARC
(mod-grs-marc.so), XML (mod-grs-xml.so) , etc.

Note
Using configure option --disable-shared builds Zebra statically and links "in" Zebra filter code stat-
ically, i.e. no .so-files are generated

You can now use Zebra. If you wish to install it system-wide, then as root type

make install

By default this will install the Zebra executables in /usr/local/bin, and the standard configuration
files in /usr/local/share/idzebra-2.0. If shared modules are built, these are installed in /usr/
local/lib/idzebra-2.0/modules. You can override this with the --prefix option to configure.

2.2 GNU/Debian

2.2.1 GNU/Debian Linux on amd64/i386 Platform

Index Data provides pre-compiled GNU/Debian and Ubuntu packages at our Debian package archive, both
for recent releases.

Zebra - User’s Guide and Reference 13 / 143

For Debian, refer to http://ftp.indexdata.dk/pub/zebra/debian/README for how to con-
figure APT. For Ubuntu, refer to http://ftp.indexdata.dk/pub/zebra/ubuntu/README.
After refreshing the package cache with the command

apt-get update

as root, the Zebra indexer is easily installed issuing

apt-get install idzebra-2.0 idzebra-2.0-doc

2.2.2 GNU/Debian and Ubuntu on other architectures

These Zebra packages are specifically compiled for GNU/Debian Linux systems and Ubuntu. Installa-
tion on other GNU/Debian systems is possible by re-compilation the Debian way: you need to add only
the deb-src sources lines to the /etc/apt/sources.list configuration file, After refreshing the
package cache with the command

apt-get update
apt-get build-dep idzebra-2.0

as root, the Zebra indexer is recompiled and installed issuing

fakeroot apt-get source --compile idzebra-2.0

as normal user. The compiled GNU/Debian packages can then be installed as root issuing

dpkg -i install idzebra-2.0*.deb libidzebra-2.0*.deb

2.3 Windows

The easiest way to install Zebra on Windows is by downloading an installer from here. The installer comes
with source too - in case you wish to compile Zebra with different Compiler options.

Zebra is shipped with "makefiles" for the NMAKE tool that comes with Microsoft Visual C++. Version
2013 has been tested.

Start a command prompt and switch the sub directory WIN where the file makefile is located. Customize
the installation by editing the makefile file (for example by using notepad). The following summarizes
the most important settings in that file:

DEBUG If set to 1, the software is compiled with debugging libraries (code generation is multi-threaded
debug DLL). If set to 0, the software is compiled with release libraries (code generation is multi-
threaded DLL).

YAZDIR Directory of YAZ source. Zebra’s makefile expects to find YAZ.lib, YAZ.dll in yazdir/lib
and yazdir/bin respectively.

http://ftp.indexdata.dk/pub/zebra/debian/README
http://ftp.indexdata.dk/pub/zebra/ubuntu/README
http://www.indexdata.com/zebra
http://www.indexdata.com/zebra
http://www.indexdata.com/zebra
http://ftp.indexdata.com/pub/zebra/win32/
http://www.visualstudio.com

HAVE_EXPAT, EXPAT_DIR If HAVE_EXPAT is set to 1, Zebra is compiled with Expat support. In this
configuration, set ZEBRA_DIR to the Expat source directory. Windows version of Expat can be
downloaded from SourceForge.

BZIP2INCLUDE, BZIP2LIB, BZIP2DEF Define these symbols if Zebra is to be compiled with BZIP2
record compression support.

Warning
The DEBUG setting in the makefile for Zebra must be set to the same value as DEBUG setting in
the makefile for YAZ. If not, the Zebra server/indexer will crash.

When satisfied with the settings in the makefile, type

nmake

Note
If the nmake command is not found on your system you probably haven’t defined the environment vari-
ables required to use that tool. To fix that, find and run the batch file vcvars32.bat. You need to run it
from within the command prompt or set the environment variables "globally"; otherwise it doesn’t work.

If you wish to recompile Zebra - for example if you modify settings in the makefile you can delete object
files, etc by running.

nmake clean

The following files are generated upon successful compilation:

bin/zebraidx.exe The Zebra indexer.

bin/zebrasrv.exe The Zebra server.

2.4 Upgrading from Zebra version 1.3.x

Zebra’s installation directories have changed a bit. In addition, the new loadable modules must be defined
in the master zebra.cfg configuration file. The old version 1.3.x configuration options

profilePath - where to look for config files
profilePath: some/local/path:/usr/share/idzebra/tab

must be changed to

profilePath - where to look for config files
profilePath: some/local/path:/usr/share/idzebra-2.0/tab

modulePath - where to look for loadable zebra modules
modulePath: /usr/lib/idzebra-2.0/modules

https://libexpat.github.io
https://libexpat.github.io
http://sources.redhat.com/bzip2/

Zebra - User’s Guide and Reference 15 / 143

Note
The internal binary register structures have changed; all Zebra databases must be re-indexed after up-
grade.

The attribute set definition files may no longer contain redirection to other fields. For example the following
snippet of a custom custom/bib1.att BIB-1 attribute set definition file is no longer supported:

att 1016 Any 1016,4,1005,62

and should be changed to

att 1016 Any

Similar behaviour can be expressed in the new release by defining a new index Any:w in all GRS-1 *.abs
record indexing configuration files. The above example configuration needs to make the changes from
version 1.3.x indexing instructions

xelm /*/alternative Body-of-text:w,Title:s,Title:w
xelm /*/title Body-of-text:w,Title:s,Title:w

to version 2.0.0 indexing instructions

xelm /*/alternative Any:w,Body-of-text:w,Title:s,Title:w
xelm /*/title Any:w,Body-of-text:w,Title:s,Title:w

It is also possible to map the numerical attribute value @attr 1=1016 onto another already existing huge
index, in this example, one could for example use the mapping

att 1016 Body-of-text

with equivalent outcome without editing all GRS-1 *.abs record indexing configuration files.

Server installations which use the special IDXPATH attribute set must add the following line to the zebra.
cfg configuration file:

attset: idxpath.att

Zebra - User’s Guide and Reference 17 / 143

Chapter 3

Tutorial

3.1 A first OAI indexing example

In this section, we will test the system by indexing a small set of sample OAI records that are included with
the Zebra distribution, running a Zebra server against the newly created database, and searching the indexes
with a client that connects to that server.

Go to the examples/oai-pmh subdirectory of the distribution archive, or make a deep copy of the De-
bian installation directory /usr/share/idzebra-2.0-examples/oai-pmh. An XML file con-
taining multiple OAI records is located in the sub directory examples/oai-pmh/data.

Additional OAI test records can be downloaded by running a shell script (you may want to abort the script
when you have waited longer than your coffee brews ..).

cd data
./fetch_OAI_data.sh
cd ../

To index these OAI records, type:

zebraidx-2.0 -c conf/zebra.cfg init
zebraidx-2.0 -c conf/zebra.cfg update data
zebraidx-2.0 -c conf/zebra.cfg commit

In case you have not installed zebra yet but have compiled the binaries from this tarball, use the following
command form:

../../index/zebraidx -c conf/zebra.cfg this and that

On some systems the Zebra binaries are installed under the generic names, you need to use the following
command form:

zebraidx -c conf/zebra.cfg this and that

In this command, the word update is followed by the name of a directory: zebraidx updates all files in
the hierarchy rooted at data. The command option -c conf/zebra.cfg points to the proper config-
uration file.

You might ask yourself how XML content is indexed using XSLT stylesheets: to satisfy your curiosity, you
might want to run the indexing transformation on an example debugging OAI record.

xsltproc conf/oai2index.xsl data/debug-record.xml

Here you see the OAI record transformed into the indexing XML format. Zebra is creating several inverted
indexes, and their name and type are clearly visible in the indexing XML format.

If your indexing command was successful, you are now ready to fire up a server. To start a server on port
9999, type:

zebrasrv-2.0 -c conf/zebra.cfg @:9999

The Zebra index that you have just created has a single database named Default. The database contains
several OAI records, and the server will return records in the XML format only. The indexing machine did
the splitting into individual records just behind the scenes.

3.2 Searching the OAI database by web service

Zebra has a build-in web service, which is close to the SRU standard web service. We use it to access our
new database using any XML enabled web browser. This service is using the PQF query language. In a
later section we show how to run a fully compliant SRU server, including support for the query language
CQL

Searching and retrieving XML records is easy. For example, you can point your browser to one of the
following URLs to search for the term the. Just point your browser at this link: http://localhost:9999/-
?version=1.1&operation=searchRetrieve&x-pquery=the

Warning
These URLs won’t work unless you have indexed the example data and started an Zebra server as
outlined in the previous section.

In case we actually want to retrieve one record, we need to alter our URL to the following http://localhost:9999/-
?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=dc

This way we can page through our result set in chunks of records, for example, we access the 6th to the 10th
record using the URL http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=6&maximumRecords=5&recordSchema=dc

3.3 Presenting search results in different formats

Zebra uses XSLT stylesheets for both XMLrecord indexing and display retrieval. In this example in-
stallation, they are two retrieval schema’s defined in conf/dom-conf.xml: the dc schema imple-
mented in conf/oai2dc.xsl, and the zebra schema implemented in conf/oai2zebra.xsl. The

http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=6&maximumRecords=5&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=6&maximumRecords=5&recordSchema=dc

Zebra - User’s Guide and Reference 19 / 143

URLs for accessing both are the same, except for the different value of the recordSchema parameter:
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=dc
and http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra
For the curious, one can see that the XSLT transformations really do the magic.

xsltproc conf/oai2dc.xsl data/debug-record.xml
xsltproc conf/oai2zebra.xsl data/debug-record.xml

Notice also that the Zebra specific parameters are injected by the engine when retrieving data, therefore
some of the attributes in the zebra retrieval schema are not filled when running the transformation from
the command line.

In addition to the user defined retrieval schema’s one can always choose from many build-in schema’s. In
case one is only interested in the Zebra internal metadata about a certain record, one uses the zebra::meta
schema. http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::meta

The zebra::data schema is used to retrieve the original stored OAI XML record. http://localhost:9999/-
?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::data

3.4 More interesting searches

The OAI indexing example defines many different index names, a study of the conf/oai2index.xsl
stylesheet reveals the following word type indexes (i.e. those with suffix :w):

any:w
title:w
author:w
subject-heading:w
description:w
contributor:w
publisher:w
language:w
rights:w

By default, searches do access the any:w index, but we can direct searches to any access point by con-
structing the correct PQF query. For example, to search in titles only, we use http://localhost:9999/-
?version=1.1&operation=searchRetrieve&x-pquery=@attr 1=title the&startRecord=1&maximumRecords=1&recordSchema=dc

Similar we can direct searches to the other indexes defined. Or we can create boolean combinations of
searches on different indexes. In this case we search for the in title and for fish in description us-
ing the query @and @attr 1=title the @attr 1=description fish. http://localhost:9999/-
?version=1.1&operation=searchRetrieve&x-pquery=@and @attr 1=title the @attr 1=description fish&startRecord=1&maximumRecords=1&recordSchema=dc

http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::meta
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::meta
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::data
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::data
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::data
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=@attr 1=title the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=@attr 1=title the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=@attr 1=title the&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=@and @attr 1=title the @attr 1=description fish&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=@and @attr 1=title the @attr 1=description fish&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=@and @attr 1=title the @attr 1=description fish&startRecord=1&maximumRecords=1&recordSchema=dc

3.5 Investigating the content of the indexes

How does the magic work? What is inside the indexes? Why is a certain record found by a search, and
another not?. The answer is in the inverted indexes. You can easily investigate them using the special Ze-
bra schema zebra::index::fieldname. In this example you can see that the title index has both
word (type :w) and phrase (type :p) indexed fields, http://localhost:9999/?version=1.1&operation=searchRetrieve&x-
pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::index::title

But where in the indexes did the term match for the query occur? Easily answered with the special Zebra
schema zebra::snippet. The matching terms are encapsulated by <s> tags. http://localhost:9999/-
?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::snippet

How can I refine my search? Which interesting search terms are found inside my hit set? Try the special Ze-
bra schema zebra::facet::fieldname:type. In this case, we investigate additional search terms
for the title:w index. http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::facet::title:w

One can ask for multiple facets. Here, we want them from phrase indexes of type :p. http://localhost:9999/-
?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::facet::publisher:p,title:p

3.6 Setting up a correct SRU web service

The SRU specification mandates that the CQL query language is supported and properly configured. Also,
the server needs to be able to emit a proper Explain XML record, which is used to determine the capabilities
of the specific server instance.

In this example configuration we exploit the similarities between the Explain record and the CQL query
language configuration, we generate the later from the former using an XSLT transformation.

xsltproc conf/explain2cqlpqftxt.xsl conf/explain.xml > conf/cql2pqf. ←↩
txt

We are all set to start the SRU/Z39.50 server including PQF and CQL query configuration. It uses the YAZ
frontend server configuration - just type

zebrasrv -f conf/yazserver.xml

First, we’d like to be sure that we can see the Explain XML response correctly. You might use either of
these equivalent requests: http://localhost:9999 or http://localhost:9999/?version=1.1&operation=explain

Now we can issue true SRU requests. For example, dc.title=the and dc.description=fish
results in the following page http://localhost:9999/?version=1.1&operation=searchRetrieve&query=dc.title=the
and dc.description=fish &startRecord=1&maximumRecords=1&recordSchema=dc

Scan of indexes is a part of the SRU server business. For example, scanning the dc.title index gives us
an idea what search terms are found there http://localhost:9999/?version=1.1&operation=scan&scanClause=dc.title=fish
, whereas http://localhost:9999/?version=1.1&operation=scan&scanClause=dc.identifier=fish accesses the
indexed identifiers.

http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::index::title
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::index::title
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::snippet
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::snippet
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::snippet
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::facet::title:w
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::facet::title:w
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::facet::publisher:p,title:p
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::facet::publisher:p,title:p
http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery=the&startRecord=1&maximumRecords=1&recordSchema=zebra::facet::publisher:p,title:p
http://localhost:9999
http://localhost:9999/?version=1.1&operation=explain
http://localhost:9999/?version=1.1&operation=searchRetrieve&query=dc.title=the and dc.description=fish&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=searchRetrieve&query=dc.title=the and dc.description=fish&startRecord=1&maximumRecords=1&recordSchema=dc
http://localhost:9999/?version=1.1&operation=scan&scanClause=dc.title=fish
http://localhost:9999/?version=1.1&operation=scan&scanClause=dc.title=fish
http://localhost:9999/?version=1.1&operation=scan&scanClause=dc.identifier=fish

Zebra - User’s Guide and Reference 21 / 143

In addition, all Zebra internal special element sets or record schema’s of the form zebra:: just work
right out of the box http://localhost:9999/?version=1.1&operation=searchRetrieve&query=dc.title=the and
dc.description=fish &startRecord=1&maximumRecords=1&recordSchema=zebra::snippet

3.7 Searching the OAI database by Z39.50 protocol

In this section we repeat the searches and presents we have done so far using the binary Z39.50 protocol,
you can use any Z39.50 client. For instance, you can use the demo command-line client that comes with
YAZ.

Connecting to the server is done by the command

yaz-client localhost:9999

When the client has connected, you can type:

Z> format xml
Z> querytype prefix
Z> elements oai
Z> find the
Z> show 1+1

Z39.50 presents using presentation stylesheets:

Z> elements dc
Z> show 2+1

Z> elements zebra
Z> show 3+1

Z39.50 buildin Zebra presents (in this configuration only if started without yaz-frontendserver):

Z> elements zebra::meta
Z> show 4+1

Z> elements zebra::meta::sysno
Z> show 5+1

Z> format sutrs
Z> show 5+1
Z> format xml

Z> elements zebra::index
Z> show 6+1

Z> elements zebra::snippet
Z> show 7+1

Z> elements zebra::facet::any:w
Z> show 1+1

http://localhost:9999/?version=1.1&operation=searchRetrieve&query=dc.title=the and dc.description=fish&startRecord=1&maximumRecords=1&recordSchema=zebra::snippet
http://localhost:9999/?version=1.1&operation=searchRetrieve&query=dc.title=the and dc.description=fish&startRecord=1&maximumRecords=1&recordSchema=zebra::snippet

Z> elements zebra::facet::publisher:p,title:p
Z> show 1+1

Z39.50 searches targeted at specific indexes and boolean combinations of these can be issued as well.

Z> elements dc
Z> find @attr 1=oai_identifier @attr 4=3 oai:caltechcstr.library. ←↩

caltech.edu:4
Z> show 1+1

Z> find @attr 1=oai_datestamp @attr 4=3 2001-04-20
Z> show 1+1

Z> find @attr 1=oai_setspec @attr 4=3 7374617475733D756E707562
Z> show 1+1

Z> find @attr 1=title communication
Z> show 1+1

Z> find @attr 1=identifier @attr 4=3
http://resolver.caltech.edu/CaltechCSTR:1986.5228-tr-86
Z> show 1+1

etc, etc.

Z39.50 scan:

yaz-client localhost:9999
Z> format xml
Z> querytype prefix
Z> scan @attr 1=oai_identifier @attr 4=3 oai
Z> scan @attr 1=oai_datestamp @attr 4=3 1
Z> scan @attr 1=oai_setspec @attr 4=3 2000
Z>
Z> scan @attr 1=title communication
Z> scan @attr 1=identifier @attr 4=3 a

Z39.50 search using server-side CQL conversion:

Z> format xml
Z> querytype cql
Z> elements dc
Z>
Z> find harry
Z>
Z> find dc.creator = the
Z> find dc.creator = the
Z> find dc.title = the
Z>
Z> find dc.description < the
Z> find dc.title > some

Zebra - User’s Guide and Reference 23 / 143

Z>
Z> find dc.identifier="http://resolver.caltech.edu/CaltechCSTR ←↩

:1978.2276-tr-78"
Z> find dc.relation = something

Tip
Z39.50 scan using server side CQL conversion - unfortunately, this will _never_ work as it is not supported
by the Z39.50 standard. If you want to use scan using server side CQL conversion, you need to make an
SRW connection using yaz-client, or a SRU connection using REST Web Services - any browser will do.

Tip
All indexes defined by ’type="0"’ in the indexing style sheet must be searched using the ’@attr 4=3’ struc-
ture attribute instruction.

Notice that searching and scan on indexes contributor, language, rights, and sourcemight fail,
simply because none of the records in the small example set have these fields set, and consequently, these
indexes might not been created.

Zebra - User’s Guide and Reference 25 / 143

Chapter 4

Overview of Zebra Architecture

4.1 Local Representation

As mentioned earlier, Zebra places few restrictions on the type of data that you can index and manage.
Generally, whatever the form of the data, it is parsed by an input filter specific to that format, and turned
into an internal structure that Zebra knows how to handle. This process takes place whenever the record is
accessed - for indexing and retrieval.

The RecordType parameter in the zebra.cfg file, or the -t option to the indexer tells Zebra how to
process input records. Two basic types of processing are available - raw text and structured data. Raw text
is just that, and it is selected by providing the argument text to Zebra. Structured records are all handled
internally using the basic mechanisms described in the subsequent sections. Zebra can read structured
records in many different formats.

4.2 Main Components

The Zebra system is designed to support a wide range of data management applications. The system can
be configured to handle virtually any kind of structured data. Each record in the system is associated with a
record schema which lends context to the data elements of the record. Any number of record schemas can
coexist in the system. Although it may be wise to use only a single schema within one database, the system
poses no such restrictions.

The Zebra indexer and information retrieval server consists of the following main applications: the zebraidx
indexing maintenance utility, and the zebrasrv information query and retrieval server. Both are using some
of the same main components, which are presented here.

The virtual Debian package idzebra-2.0 installs all the necessary packages to start working with Zebra
- including utility programs, development libraries, documentation and modules.

4.2.1 Core Zebra Libraries Containing Common Functionality

The core Zebra module is the meat of the zebraidx indexing maintenance utility, and the zebrasrv infor-
mation query and retrieval server binaries. Shortly, the core libraries are responsible for

Dynamic Loading of external filter modules, in case the application is not compiled statically. These filter
modules define indexing, search and retrieval capabilities of the various input formats.

Index Maintenance Zebra maintains Term Dictionaries and ISAM index entries in inverted index struc-
tures kept on disk. These are optimized for fast inset, update and delete, as well as good search
performance.

Search Evaluation by execution of search requests expressed in PQF/RPN data structures, which are
handed over from the YAZ server frontend API. Search evaluation includes construction of hit lists
according to boolean combinations of simpler searches. Fast performance is achieved by careful use
of index structures, and by evaluation specific index hit lists in correct order.

Ranking and Sorting components call resorting/re-ranking algorithms on the hit sets. These might also be
pre-sorted not only using the assigned document ID’s, but also using assigned static rank information.

Record Presentation returns - possibly ranked - result sets, hit numbers, and the like internal data to the
YAZ server backend API for shipping to the client. Each individual filter module implements it’s own
specific presentation formats.

The Debian package libidzebra-2.0 contains all run-time libraries for Zebra, the documentation in
PDF and HTML is found in idzebra-2.0-doc, and idzebra-2.0-common includes common es-
sential Zebra configuration files.

4.2.2 Zebra Indexer

The zebraidx indexing maintenance utility loads external filter modules used for indexing data records of
different type, and creates, updates and drops databases and indexes according to the rules defined in the
filter modules.

The Debian package idzebra-2.0-utils contains the zebraidx utility.

4.2.3 Zebra Searcher/Retriever

This is the executable which runs the Z39.50/SRU/SRW server and glues together the core libraries and the
filter modules to one great Information Retrieval server application.

The Debian package idzebra-2.0-utils contains the zebrasrv utility.

4.2.4 YAZ Server Frontend

The YAZ server frontend is a full fledged stateful Z39.50 server taking client connections, and forwarding
search and scan requests to the Zebra core indexer.

In addition to Z39.50 requests, the YAZ server frontend acts as HTTP server, honoring SRU SOAP requests,
and SRU REST requests. Moreover, it can translate incoming CQL queries to PQF queries, if correctly
configured.

YAZ is an Open Source toolkit that allows you to develop software using the ANSI Z39.50/ISO23950
standard for information retrieval. It is packaged in the Debian packages yaz and libyaz.

https://www.loc.gov/standards/sru/
http://www.loc.gov/standards/sru/cql/
http://www.indexdata.com/yaz/doc/tools.html#PQF
http://www.indexdata.com/yaz

Zebra - User’s Guide and Reference 27 / 143

4.2.5 Record Models and Filter Modules

The hard work of knowing what to index, how to do it, and which part of the records to send in a search/re-
trieve response is implemented in various filter modules. It is their responsibility to define the exact indexing
and record display filtering rules.

The virtual Debian package libidzebra-2.0-modules installs all base filter modules.

4.2.5.1 DOM XML Record Model and Filter Module

The DOM XML filter uses a standard DOM XML structure as internal data model, and can thus parse,
index, and display any XML document.

A parser for binary MARC records based on the ISO2709 library standard is provided, it transforms these
to the internal MARCXML DOM representation.

The internal DOM XML representation can be fed into four different pipelines, consisting of arbitrarily
many successive XSLT transformations; these are for

• input parsing and initial transformations,

• indexing term extraction transformations

• transformations before internal document storage, and

• retrieve transformations from storage to output format

The DOM XML filter pipelines use XSLT (and if supported on your platform, even EXSLT), it brings thus
full XPATH support to the indexing, storage and display rules of not only XML documents, but also binary
MARC records.

Finally, the DOM XML filter allows for static ranking at index time, and to to sort hit lists according to
predefined static ranks.

Details on the experimental DOM XML filter are found in Chapter 7.

The Debian package libidzebra-2.0-mod-dom contains the DOM filter module.

4.2.5.2 ALVIS XML Record Model and Filter Module

Note
The functionality of this record model has been improved and replaced by the DOM XML record model.
See Section 4.2.5.1.

The Alvis filter for XML files is an XSLT based input filter. It indexes element and attribute content of any
thinkable XML format using full XPATH support, a feature which the standard Zebra GRS-1 SGML and
XML filters lacked. The indexed documents are parsed into a standard XML DOM tree, which restricts
record size according to availability of memory.

The Alvis filter uses XSLT display stylesheets, which let the Zebra DB administrator associate multiple,
different views on the same XML document type. These views are chosen on-the-fly in search time.

In addition, the Alvis filter configuration is not bound to the arcane BIB-1 Z39.50 library catalogue indexing
traditions and folklore, and is therefore easier to understand.

Finally, the Alvis filter allows for static ranking at index time, and to to sort hit lists according to predefined
static ranks. This imposes no overhead at all, both search and indexing perform still O(1) irrespectively of
document collection size. This feature resembles Google’s pre-ranking using their PageRank algorithm.

Details on the experimental Alvis XSLT filter are found in Chapter 8.

The Debian package libidzebra-2.0-mod-alvis contains the Alvis filter module.

4.2.5.3 GRS-1 Record Model and Filter Modules

Note
The functionality of this record model has been improved and replaced by the DOM XML record model.
See Section 4.2.5.1.

The GRS-1 filter modules described in Chapter 9 are all based on the Z39.50 specifications, and it is abso-
lutely mandatory to have the reference pages on BIB-1 attribute sets on you hand when configuring GRS-1
filters. The GRS filters come in different flavors, and a short introduction is needed here. GRS-1 filters of
various kind have also been called ABS filters due to the *.abs configuration file suffix.

The grs.marc and grs.marcxml filters are suited to parse and index binary and XML versions of tradi-
tional library MARC records based on the ISO2709 standard. The Debian package for both filters is
libidzebra-2.0-mod-grs-marc.

GRS-1 TCL scriptable filters for extensive user configuration come in two flavors: a regular expression filter
grs.regx using TCL regular expressions, and a general scriptable TCL filter called grs.tcl are both included
in the libidzebra-2.0-mod-grs-regx Debian package.

A general purpose SGML filter is called grs.sgml. This filter is not yet packaged, but planned to be in the
libidzebra-2.0-mod-grs-sgml Debian package.

The Debian package libidzebra-2.0-mod-grs-xml includes the grs.xml filter which uses Expat to
parse records in XML and turn them into IDZebra’s internal GRS-1 node trees. Have also a look at the
Alvis XML/XSLT filter described in the next session.

4.2.5.4 TEXT Record Model and Filter Module

Plain ASCII text filter. TODO: add information here.

4.3 Indexing and Retrieval Workflow

Records pass through three different states during processing in the system.

https://libexpat.github.io

Zebra - User’s Guide and Reference 29 / 143

• When records are accessed by the system, they are represented in their local, or native format. This might
be SGML or HTML files, News or Mail archives, MARC records. If the system doesn’t already know
how to read the type of data you need to store, you can set up an input filter by preparing conversion rules
based on regular expressions and possibly augmented by a flexible scripting language (Tcl). The input
filter produces as output an internal representation, a tree structure.

• When records are processed by the system, they are represented in a tree-structure, constructed by tagged
data elements hanging off a root node. The tagged elements may contain data or yet more tagged elements
in a recursive structure. The system performs various actions on this tree structure (indexing, element
selection, schema mapping, etc.),

• Before transmitting records to the client, they are first converted from the internal structure to a form
suitable for exchange over the network - according to the Z39.50 standard.

4.4 Retrieval of Zebra internal record data

Starting with Zebra version 2.0.5 or newer, it is possible to use a special element set which has the prefix
zebra::.

Using this element will, regardless of record type, return Zebra’s internal index structure/data for a record.
In particular, the regular record filters are not invoked when these are in use. This can in some cases make
the retrieval faster than regular retrieval operations (for MARC, XML etc).

Element Set Description
zebra::meta::sysno Get Zebra record system ID
zebra::data Get raw record
zebra::meta Get Zebra record internal metadata
zebra::index Get all indexed keys for record
zebra::index::f Get indexed keys for field f for record
zebra::index::f:t Get indexed keys for field f and type t for record

zebra::snippet

Get snippet for record for one or more indexes
(f1,f2,..). This includes a phrase from the original
record at the point where a match occurs (for a
query). By default give terms before - and after
are included in the snippet. The matching terms
are enclosed within element <s>. The snippet
facility requires Zebra 2.0.16 or later.

zebra::facet::f1:t1,f2:t2,..

Get facet of a result set. The facet result is
returned as if it was a normal record, while in
reality is a recap of most "important" terms in a
result set for the fields given. The facet facility
first appeared in Zebra 2.0.20.

Table 4.1: Special Retrieval Elements

For example, to fetch the raw binary record data stored in the zebra internal storage, or on the filesystem,
the following commands can be issued:

Z> f @attr 1=title my
Z> format xml
Z> elements zebra::data
Z> s 1+1
Z> format sutrs
Z> s 1+1
Z> format usmarc
Z> s 1+1

The special zebra::data element set name is defined for any record syntax, but will always fetch the
raw record data in exactly the original form. No record syntax specific transformations will be applied to
the raw record data.

Also, Zebra internal metadata about the record can be accessed:

Z> f @attr 1=title my
Z> format xml
Z> elements zebra::meta::sysno
Z> s 1+1

displays in XML record syntax only internal record system number, whereas

Z> f @attr 1=title my
Z> format xml
Z> elements zebra::meta
Z> s 1+1

displays all available metadata on the record. These include system number, database name, indexed file-
name, filter used for indexing, score and static ranking information and finally bytesize of record.

Sometimes, it is very hard to figure out what exactly has been indexed how and in which indexes. Using
the indexing stylesheet of the Alvis filter, one can at least see which portion of the record went into which
index, but a similar aid does not exist for all other indexing filters.

The special zebra::index element set names are provided to access information on per record indexed
fields. For example, the queries

Z> f @attr 1=title my
Z> format sutrs
Z> elements zebra::index
Z> s 1+1

will display all indexed tokens from all indexed fields of the first record, and it will display in SUTRS record
syntax, whereas

Z> f @attr 1=title my
Z> format xml
Z> elements zebra::index::title
Z> s 1+1
Z> elements zebra::index::title:p
Z> s 1+1

Zebra - User’s Guide and Reference 31 / 143

displays in XML record syntax only the content of the zebra string index title, or even only the type p
phrase indexed part of it.

Note
Trying to access numeric BIB-1 use attributes or trying to access non-existent zebra intern string access
points will result in a Diagnostic 25: Specified element set ’name not valid for specified database.

Zebra - User’s Guide and Reference 33 / 143

Chapter 5

Query Model

5.1 Query Model Overview

5.1.1 Query Languages

Zebra is born as a networking Information Retrieval engine adhering to the international standards Z39.50
and SRU, and implement the type-1 Reverse Polish Notation (RPN) query model defined there. Unfortu-
nately, this model has only defined a binary encoded representation, which is used as transport packaging
in the Z39.50 protocol layer. This representation is not human readable, nor defines any convenient way to
specify queries.

Since the type-1 (RPN) query structure has no direct, useful string representation, every client application
needs to provide some form of mapping from a local query notation or representation to it.

5.1.1.1 Prefix Query Format (PQF)

Index Data has defined a textual representation in the Prefix Query Format, short PQF, which maps one-
to-one to binary encoded type-1 RPN queries. PQF has been adopted by other parties developing Z39.50
software, and is often referred to as Prefix Query Notation, or in short PQN. See Section 5.2 for further
explanations and descriptions of Zebra’s capabilities.

5.1.1.2 Common Query Language (CQL)

The query model of the type-1 RPN, expressed in PQF/PQN is natively supported. On the other hand, the
default SRU web services Common Query Language CQL is not natively supported.

Zebra can be configured to understand and map CQL to PQF. See Section 5.4.

5.1.2 Operation types

Zebra supports all of the three different Z39.50/SRU operations defined in the standards: explain, search,
and scan. A short description of the functionality and purpose of each is quite in order here.

https://www.loc.gov/z3950/agency/
https://www.loc.gov/standards/sru/
http://www.indexdata.com/yaz/doc/tools.html#PQF
http://www.loc.gov/standards/sru/cql/

5.1.2.1 Explain Operation

The syntax of Z39.50/SRU queries is well known to any client, but the specific semantics - taking into
account a particular servers functionalities and abilities - must be discovered from case to case. Enters the
explain operation, which provides the means for learning which fields (also called indexes or access points)
are provided, which default parameter the server uses, which retrieve document formats are defined, and
which specific parts of the general query model are supported.

The Z39.50 embeds the explain operation by performing a search in the magic IR-Explain-1 database;
see Section 5.2.2.

In SRU, explain is an entirely separate operation, which returns an ZeeRex XML record according to the
structure defined by the protocol.

In both cases, the information gathered through explain operations can be used to auto-configure a client
user interface to the servers capabilities.

5.1.2.2 Search Operation

Search and retrieve interactions are the raison d’être. They are used to query the remote database and return
search result documents. Search queries span from simple free text searches to nested complex boolean
queries, targeting specific indexes, and possibly enhanced with many query semantic specifications. Search
interactions are the heart and soul of Z39.50/SRU servers.

5.1.2.3 Scan Operation

The scan operation is a helper functionality, which operates on one index or access point a time.

It provides the means to investigate the content of specific indexes. Scanning an index returns a handful
of terms actually found in the indexes, and in addition the scan operation returns the number of documents
indexed by each term. A search client can use this information to propose proper spelling of search terms,
to auto-fill search boxes, or to display controlled vocabularies.

5.2 RPN queries and semantics

The PQF grammar is documented in the YAZ manual, and shall not be repeated here. This textual PQF
representation is not transmitted to Zebra during search, but it is in the client mapped to the equivalent
Z39.50 binary query parse tree.

5.2.1 RPN tree structure

The RPN parse tree - or the equivalent textual representation in PQF - may start with one specification of
the attribute set used. Following is a query tree, which consists of atomic query parts (APT) or named result
sets, eventually paired by boolean binary operators, and finally recursively combined into complex query
trees.

http://www.indexdata.com/yaz/doc/tools.html#PQF

Zebra - User’s Guide and Reference 35 / 143

5.2.1.1 Attribute sets

Attribute sets define the exact meaning and semantics of queries issued. Zebra comes with some predefined
attribute set definitions, others can easily be defined and added to the configuration.

Attribute set PQF notation (Short
hand) Status Notes

Explain exp-1

Special attribute set
used on the special
automagic
IR-Explain-1
database to gain
information on server
capabilities, database
names, and database
and semantics.

predefined

BIB-1 bib-1

Standard PQF query
language attribute set
which defines the
semantics of Z39.50
searching. In addition,
all of the non-use
attributes (types 2-14)
define the hard-wired
Zebra internal query
processing.

default

GILS gils
Extension to the BIB-1
attribute set.

predefined

Table 5.1: Attribute sets predefined in Zebra

The use attributes (type 1) mappings the predefined attribute sets are found in the attribute set configuration
files tab/*.att.

Note
The Zebra internal query processing is modeled after the BIB-1 attribute set, and the non-use attributes
type 2-6 are hard-wired in. It is therefore essential to be familiar with Section 5.2.4.

5.2.1.2 Boolean operators

A pair of sub query trees, or of atomic queries, is combined using the standard boolean operators into new
query trees. Thus, boolean operators are always internal nodes in the query tree.

For example, we can combine the terms information and retrieval into different searches in the default
index of the default attribute set as follows. Querying for the union of all documents containing the terms
information OR retrieval:

Keyword Operator Description

@and binary AND operator
Set intersection of two atomic
queries hit sets

@or binary OR operator
Set union of two atomic queries
hit sets

@not binary AND NOT operator
Set complement of two atomic
queries hit sets

@prox binary PROXIMITY operator

Set intersection of two atomic
queries hit sets. In addition, the
intersection set is purged for all
documents which do not satisfy
the requested query term
proximity. Usually a proper
subset of the AND operation.

Table 5.2: Boolean operators

Z> find @or information retrieval

Querying for the intersection of all documents containing the terms information AND retrieval: The hit set
is a subset of the corresponding OR query.

Z> find @and information retrieval

Querying for the intersection of all documents containing the terms information AND retrieval, taking
proximity into account: The hit set is a subset of the corresponding AND query (see the PQF grammar for
details on the proximity operator):

Z> find @prox 0 3 0 2 k 2 information retrieval

Querying for the intersection of all documents containing the terms information AND retrieval, in the
same order and near each other as described in the term list. The hit set is a subset of the corresponding
PROXIMITY query.

Z> find "information retrieval"

5.2.1.3 Atomic queries (APT)

Atomic queries are the query parts which work on one access point only. These consist of an attribute list
followed by a single term or a quoted term list, and are often called Attributes-Plus-Terms (APT) queries.

Atomic (APT) queries are always leaf nodes in the PQF query tree. UN-supplied non-use attributes types
2-12 are either inherited from higher nodes in the query tree, or are set to Zebra’s default values. See
Section 5.2.3 for details.

Querying for the term information in the default index using the default attribute set, the server choice of
access point/index, and the default non-use attributes.

http://www.indexdata.com/yaz/doc/tools.html#PQF

Zebra - User’s Guide and Reference 37 / 143

Name Type Notes

attribute list List of orthogonal attributes

Any of the orthogonal attribute
types may be omitted, these are
inherited from higher query tree
nodes, or if not inherited, are set
to the default Zebra
configuration values.

term single term or quoted term list
Here the search terms or list of
search terms is added to the
query

Table 5.3: Atomic queries (APT)

Z> find information

Equivalent query fully specified including all default values:

Z> find @attrset bib-1 @attr 1=1017 @attr 2=3 @attr 3=3 @attr 4=1 ←↩
@attr 5=100 @attr 6=1 information

Finding all documents which have the term debussy in the title field.

Z> find @attr 1=4 debussy

The scan operation is only supported with atomic APT queries, as it is bound to one access point at a time.
Boolean query trees are not allowed during scan.

For example, we might want to scan the title index, starting with the term debussy, and displaying this and
the following terms in lexicographic order:

Z> scan @attr 1=4 debussy

5.2.1.4 Named Result Sets

Named result sets are supported in Zebra, and result sets can be used as operands without limitations. It
follows that named result sets are leaf nodes in the PQF query tree, exactly as atomic APT queries are.

After the execution of a search, the result set is available at the server, such that the client can use it for
subsequent searches or retrieval requests. The Z30.50 standard actually stresses the fact that result sets are
volatile. It may cease to exist at any time point after search, and the server will send a diagnostic to the
effect that the requested result set does not exist any more.

Defining a named result set and re-using it in the next query, using yaz-client. Notice that the client, not the
server, assigns the string ’1’ to the named result set.

Z> f @attr 1=4 mozart
...
Number of hits: 43, setno 1
...

Z> f @and @set 1 @attr 1=4 amadeus
...
Number of hits: 14, setno 2

Note
Named result sets are only supported by the Z39.50 protocol. The SRU web service is stateless, and
therefore the notion of named result sets does not exist when accessing a Zebra server by the SRU
protocol.

5.2.1.5 Zebra’s special access point of type ’string’

The numeric use (type 1) attribute is usually referred to from a given attribute set. In addition, Zebra let you
use any internal index name defined in your configuration as use attribute value. This is a great feature for
debugging, and when you do not need the complexity of defined use attribute values. It is the preferred way
of accessing Zebra indexes directly.

Finding all documents which have the term list "information retrieval" in an Zebra index, using its internal
full string name. Scanning the same index.

Z> find @attr 1=sometext "information retrieval"
Z> scan @attr 1=sometext aterm

Searching or scanning the bib-1 use attribute 54 using its string name:

Z> find @attr 1=Code-language eng
Z> scan @attr 1=Code-language ""

It is possible to search in any silly string index - if it’s defined in your indexing rules and can be parsed by
the PQF parser. This is definitely not the recommended use of this facility, as it might confuse your users
with some very unexpected results.

Z> find @attr 1=silly/xpath/alike[@index]/name "information ←↩
retrieval"

See also Section 5.3.5 for details, and the section called “The SRU Server” for the SRU PQF query extension
using string names as a fast debugging facility.

5.2.1.6 Zebra’s special access point of type ’XPath’ for GRS-1 filters

As we have seen above, it is possible (albeit seldom a great idea) to emulate XPath 1.0 based search by
defining use (type 1) string attributes which in appearance resemble XPath queries. There are two problems
with this approach: first, the XPath-look-alike has to be defined at indexing time, no new undefined XPath
queries can entered at search time, and second, it might confuse users very much that an XPath-alike index
name in fact gets populated from a possible entirely different XML element than it pretends to access.

When using the GRS-1 Record Model (see Chapter 9), we have the possibility to embed life XPath expres-
sions in the PQF queries, which are here called use (type 1) xpath attributes. You must enable the xpath
enable directive in your .abs configuration files.

http://www.w3.org/TR/xpath

Zebra - User’s Guide and Reference 39 / 143

Note
Only a very restricted subset of the XPath 1.0 standard is supported as the GRS-1 record model is simpler
than a full XML DOM structure. See the following examples for possibilities.

Finding all documents which have the term "content" inside a text node found in a specific XML DOM
subtree, whose starting element is addressed by XPath.

Z> find @attr 1=/root content
Z> find @attr 1=/root/first content

Notice that the XPath must be absolute, i.e., must start with ’/’, and that the XPath descendant-or-self
axis followed by a text node selection text() is implicitly appended to the stated XPath. It follows that
the above searches are interpreted as:

Z> find @attr 1=/root//text() content
Z> find @attr 1=/root/first//text() content

Searching inside attribute strings is possible:

Z> find @attr 1=/link/@creator morten

Filter the addressing XPath by a predicate working on exact string values in attributes (in the XML sense)
can be done: return all those docs which have the term "english" contained in one of all text sub nodes of
the subtree defined by the XPath /record/title[@lang=’en’]. And similar predicate filtering.

Z> find @attr 1=/record/title[@lang=’en’] english
Z> find @attr 1=/link[@creator=’sisse’] sibelius
Z> find @attr 1=/link[@creator=’sisse’]/description[@xml:lang=’da’] ←↩

sibelius

Combining numeric indexes, boolean expressions, and xpath based searches is possible:

Z> find @attr 1=/record/title @and foo bar
Z> find @and @attr 1=/record/title foo @attr 1=4 bar

Escaping PQF keywords and other non-parseable XPath constructs with ’{ }’ to prevent client-side PQF
parsing syntax errors:

Z> find @attr {1=/root/first[@attr=’danish’]} content
Z> find @attr {1=/record/@set} oai

Warning
It is worth mentioning that these dynamic performed XPath queries are a performance bottleneck,
as no optimized specialized indexes can be used. Therefore, avoid the use of this facility when
speed is essential, and the database content size is medium to large.

http://www.w3.org/TR/xpath

5.2.2 Explain Attribute Set

The Z39.50 standard defines the Explain attribute set Exp-1, which is used to discover information about
a server’s search semantics and functional capabilities Zebra exposes a "classic" Explain database by base
name IR-Explain-1, which is populated with system internal information.

The attribute-set exp-1 consists of a single use attribute (type 1).

In addition, the non-Use BIB-1 attributes, that is, the types Relation, Position, Structure, Truncation, and
Completeness are imported from the BIB-1 attribute set, and may be used within any explain query.

5.2.2.1 Use Attributes (type = 1)

The following Explain search attributes are supported: ExplainCategory (@attr 1=1), DatabaseName
(@attr 1=3), DateAdded (@attr 1=9), DateChanged(@attr 1=10).

A search in the use attribute ExplainCategory supports only these predefined values: CategoryList,
TargetInfo, DatabaseInfo, AttributeDetails.

See tab/explain.att and the Z39.50 standard for more information.

5.2.2.2 Explain searches with yaz-client

Classic Explain only defines retrieval of Explain information via ASN.1. Practically no Z39.50 clients
supports this. Fortunately they don’t have to - Zebra allows retrieval of this information in other formats:
SUTRS, XML, GRS-1 and ASN.1 Explain.

List supported categories to find out which explain commands are supported:

Z> base IR-Explain-1
Z> find @attr exp1 1=1 categorylist
Z> form sutrs
Z> show 1+2

Get target info, that is, investigate which databases exist at this server endpoint:

Z> base IR-Explain-1
Z> find @attr exp1 1=1 targetinfo
Z> form xml
Z> show 1+1
Z> form grs-1
Z> show 1+1
Z> form sutrs
Z> show 1+1

List all supported databases, the number of hits is the number of databases found, which most commonly
are the following two: the Default and the IR-Explain-1 databases.

Z> base IR-Explain-1
Z> find @attr exp1 1=1 databaseinfo
Z> form sutrs
Z> show 1+2

https://www.loc.gov/z3950/agency/markup/07.html
https://www.loc.gov/z3950/agency/

Zebra - User’s Guide and Reference 41 / 143

Get database info record for database Default.

Z> base IR-Explain-1
Z> find @and @attr exp1 1=1 databaseinfo @attr exp1 1=3 Default

Identical query with explicitly specified attribute set:

Z> base IR-Explain-1
Z> find @attrset exp1 @and @attr 1=1 databaseinfo @attr 1=3 Default

Get attribute details record for database Default. This query is very useful to study the internal Zebra
indexes. If records have been indexed using the alvis XSLT filter, the string representation names of the
known indexes can be found.

Z> base IR-Explain-1
Z> find @and @attr exp1 1=1 attributedetails @attr exp1 1=3 Default

Identical query with explicitly specified attribute set:

Z> base IR-Explain-1
Z> find @attrset exp1 @and @attr 1=1 attributedetails @attr 1=3 ←↩

Default

5.2.3 BIB-1 Attribute Set

Most of the information contained in this section is an excerpt of the ATTRIBUTE SET BIB-1 (Z39.50-
1995) SEMANTICS found at . The BIB-1 Attribute Set Semantics from 1995, also in an updated BIB-1
Attribute Set version from 2003. Index Data is not the copyright holder of this information, except for the
configuration details, the listing of Zebra’s capabilities, and the example queries.

5.2.3.1 Use Attributes (type 1)

A use attribute specifies an access point for any atomic query. These access points are highly dependent on
the attribute set used in the query, and are user configurable using the following default configuration files:
tab/bib1.att, tab/dan1.att, tab/explain.att, and tab/gils.att.

For example, some few BIB-1 use attributes from the tab/bib1.att are:

att 1 Personal-name
att 2 Corporate-name
att 3 Conference-name
att 4 Title
...
att 1009 Subject-name-personal
att 1010 Body-of-text
att 1011 Date/time-added-to-db
...
att 1016 Any
att 1017 Server-choice
att 1018 Publisher

https://www.loc.gov/z3950/agency/bib1.html
https://www.loc.gov/z3950/agency/defns/bib1.html
https://www.loc.gov/z3950/agency/defns/bib1.html

...
att 1035 Anywhere
att 1036 Author-Title-Subject

New attribute sets can be added by adding new tab/*.att configuration files, which need to be sourced
in the main configuration zebra.cfg.

In addition, Zebra allows the access of internal index names and dynamic XPath as use attributes; see
Section 5.2.1.5 and Section 5.2.1.6.

Phrase search for information retrieval in the title-register, scanning the same register afterwards:

Z> find @attr 1=4 "information retrieval"
Z> scan @attr 1=4 information

5.2.4 Zebra general Bib1 Non-Use Attributes (type 2-6)

5.2.4.1 Relation Attributes (type 2)

Relation attributes describe the relationship of the access point (left side of the relation) to the search term
as qualified by the attributes (right side of the relation), e.g., Date-publication <= 1975.

Relation Value Notes
Less than 1 supported
Less than or equal 2 supported
Equal 3 default
Greater or equal 4 supported
Greater than 5 supported
Not equal 6 unsupported
Phonetic 100 unsupported
Stem 101 unsupported
Relevance 102 supported
AlwaysMatches 103 supported *

Table 5.4: Relation Attributes (type 2)

Note
AlwaysMatches searches are only supported if alwaysmatches indexing has been enabled. See Sec-
tion 10.1

The relation attributes 1-5 are supported and work exactly as expected. All ordering operations are based on
a lexicographical ordering, except when the structure attribute numeric (109) is used. In this case, ordering
is numerical. See Section 5.2.4.3.

Zebra - User’s Guide and Reference 43 / 143

Z> find @attr 1=Title @attr 2=1 music
...
Number of hits: 11745, setno 1
...
Z> find @attr 1=Title @attr 2=2 music
...
Number of hits: 11771, setno 2
...
Z> find @attr 1=Title @attr 2=3 music
...
Number of hits: 532, setno 3
...
Z> find @attr 1=Title @attr 2=4 music
...
Number of hits: 11463, setno 4
...
Z> find @attr 1=Title @attr 2=5 music
...
Number of hits: 11419, setno 5

The relation attribute Relevance (102) is supported, see Section 6.9 for full information.

Ranked search for information retrieval in the title-register:

Z> find @attr 1=4 @attr 2=102 "information retrieval"

The relation attribute AlwaysMatches (103) is in the default configuration supported in conjecture with
structure attribute Phrase (1) (which may be omitted by default). It can be configured to work with other
structure attributes, see the configuration file tab/default.idx and Section 5.3.5.

AlwaysMatches (103) is a great way to discover how many documents have been indexed in a given field.
The search term is ignored, but needed for correct PQF syntax. An empty search term may be supplied.

Z> find @attr 1=Title @attr 2=103 ""
Z> find @attr 1=Title @attr 2=103 @attr 4=1 ""

5.2.4.2 Position Attributes (type 3)

The position attribute specifies the location of the search term within the field or subfield in which it appears.

Position Value Notes
First in field 1 supported *
First in subfield 2 supported *
Any position in field 3 default

Table 5.5: Position Attributes (type 3)

Note
Zebra only supports first-in-field seaches if the firstinfield is enabled for the index Refer to Sec-
tion 10.1. Zebra does not distinguish between first in field and first in subfield. They result in the same hit
count. Searching for first position in (sub)field in only supported in Zebra 2.0.2 and later.

5.2.4.3 Structure Attributes (type 4)

The structure attribute specifies the type of search term. This causes the search to be mapped on different
Zebra internal indexes, which must have been defined at index time.

The possible values of the structure attribute (type 4) can be defined using the configuration
file tab/default.idx. The default configuration is summarized in this table.

Structure Value Notes
Phrase 1 default
Word 2 supported
Key 3 supported
Year 4 supported
Date (normalized) 5 supported
Word list 6 supported
Date (un-normalized) 100 unsupported
Name (normalized) 101 unsupported
Name (un-normalized) 102 unsupported
Structure 103 unsupported
Urx 104 supported
Free-form-text 105 supported
Document-text 106 supported
Local-number 107 supported
String 108 unsupported
Numeric string 109 supported

Table 5.6: Structure Attributes (type 4)

The structure attribute values Word list (6) is supported, and maps to the boolean AND combination
of words supplied. The word list is useful when Google-like bag-of-word queries need to be translated from
a GUI query language to PQF. For example, the following queries are equivalent:

Z> find @attr 1=Title @attr 4=6 "mozart amadeus"
Z> find @attr 1=Title @and mozart amadeus

The structure attribute value Free-form-text (105) and Document-text (106) are supported,
and map both to the boolean OR combination of words supplied. The following queries are equivalent:

Z> find @attr 1=Body-of-text @attr 4=105 "bach salieri teleman"
Z> find @attr 1=Body-of-text @attr 4=106 "bach salieri teleman"
Z> find @attr 1=Body-of-text @or bach @or salieri teleman

This OR list of terms is very useful in combination with relevance ranking:

Zebra - User’s Guide and Reference 45 / 143

Z> find @attr 1=Body-of-text @attr 2=102 @attr 4=105 "bach salieri ←↩
teleman"

The structure attribute value Local number (107) is supported, and maps always to the Zebra internal
document ID, irrespectively which use attribute is specified. The following queries have exactly the same
unique record in the hit set:

Z> find @attr 4=107 10
Z> find @attr 1=4 @attr 4=107 10
Z> find @attr 1=1010 @attr 4=107 10

In the GILS schema (gils.abs), the west-bounding-coordinate is indexed as type n, and is therefore
searched by specifying structure=Numeric String. To match all those records with west-bounding-coordinate
greater than -114 we use the following query:

Z> find @attr 4=109 @attr 2=5 @attr gils 1=2038 -114

Note
The exact mapping between PQF queries and Zebra internal indexes and index types is explained in
Section 5.3.5.

5.2.4.4 Truncation Attributes (type = 5)

The truncation attribute specifies whether variations of one or more characters are allowed between search
term and hit terms, or not. Using non-default truncation attributes will broaden the document hit set of a
search query.

Truncation Value Notes
Right truncation 1 supported
Left truncation 2 supported
Left and right truncation 3 supported
Do not truncate 100 default
Process # in search term 101 supported
RegExpr-1 102 supported
RegExpr-2 103 supported

Table 5.7: Truncation Attributes (type 5)

The truncation attribute values 1-3 perform the obvious way:

Z> scan @attr 1=Body-of-text schnittke
...

* schnittke (81)
schnittkes (31)
schnittstelle (1)
...

Z> find @attr 1=Body-of-text @attr 5=1 schnittke
...
Number of hits: 95, setno 7
...
Z> find @attr 1=Body-of-text @attr 5=2 schnittke
...
Number of hits: 81, setno 6
...
Z> find @attr 1=Body-of-text @attr 5=3 schnittke
...
Number of hits: 95, setno 8

The truncation attribute value Process # in search term (101) is a poor-man’s regular expres-
sion search. It maps each # to .*, and performs then a Regexp-1 (102) regular expression search. The
following two queries are equivalent:

Z> find @attr 1=Body-of-text @attr 5=101 schnit#ke
Z> find @attr 1=Body-of-text @attr 5=102 schnit.*ke
...
Number of hits: 89, setno 10

The truncation attribute value Regexp-1 (102) is a normal regular search, see Section 5.3.6 for details.

Z> find @attr 1=Body-of-text @attr 5=102 schnit+ke
Z> find @attr 1=Body-of-text @attr 5=102 schni[a-t]+ke

The truncation attribute value Regexp-2 (103) is a Zebra specific extension which allows fuzzy
matches. One single error in spelling of search terms is allowed, i.e., a document is hit if it includes a
term which can be mapped to the used search term by one character substitution, addition, deletion or
change of position.

Z> find @attr 1=Body-of-text @attr 5=100 schnittke
...
Number of hits: 81, setno 14
...
Z> find @attr 1=Body-of-text @attr 5=103 schnittke
...
Number of hits: 103, setno 15
...

5.2.4.5 Completeness Attributes (type = 6)

The Completeness Attributes (type = 6) is used to specify that a given search term or term
list is either part of the terms of a given index/field (Incomplete subfield (1)), or is what literally
is found in the entire field’s index (Complete field (3)).

The Completeness Attributes (type = 6) is only partially and conditionally supported in the
sense that it is ignored if the hit index is not of structure type="w" or type="p".

Incomplete subfield (1) is the default, and makes Zebra use register type="w", whereas Complete
field (3) triggers search and scan in index type="p".

Zebra - User’s Guide and Reference 47 / 143

Completeness Value Notes
Incomplete subfield 1 default
Complete subfield 2 deprecated
Complete field 3 supported

Table 5.8: Completeness Attributes (type = 6)

The Complete subfield (2) is a reminiscent from the happy MARC binary format days. Zebra
does not support it, but maps silently to Complete field (3).

Note
The exact mapping between PQF queries and Zebra internal indexes and index types is explained in
Section 5.3.5.

5.3 Extended Zebra RPN Features

The Zebra internal query engine has been extended to specific needs not covered by the bib-1 attribute set
query model. These extensions are non-standard and non-portable: most functional extensions are modeled
over the bib-1 attribute set, defining type 7 and higher values. There are also the special string type
index names for the idxpath attribute set.

5.3.1 Zebra specific retrieval of all records

Zebra defines a hardwired string index name called _ALLRECORDS. It matches any record contained in
the database, if used in conjunction with the relation attribute AlwaysMatches (103).

The _ALLRECORDS index name is used for total database export. The search term is ignored, it may be
empty.

Z> find @attr 1=_ALLRECORDS @attr 2=103 ""

Combination with other index types can be made. For example, to find all records which are not indexed in
the Title register, issue one of the two equivalent queries:

Z> find @not @attr 1=_ALLRECORDS @attr 2=103 "" @attr 1=Title @attr ←↩
2=103 ""

Z> find @not @attr 1=_ALLRECORDS @attr 2=103 "" @attr 1=4 @attr 2=103 ←↩
""

Warning
The special string index _ALLRECORDS is experimental, and the provided functionality and syntax
may very well change in future releases of Zebra.

5.3.2 Zebra specific Search Extensions to all Attribute Sets

Zebra extends the BIB-1 attribute types, and these extensions are recognized regardless of attribute set used
in a search operation query.

Name Value Operation Zebra version
Embedded Sort 7 search 1.1
Term Set 8 search 1.1
Rank Weight 9 search 1.1
Term Reference 10 search 1.4
Local Approx Limit 11 search 1.4
Global Approx Limit 12 search 2.0.8
Maximum number of
truncated terms
(truncmax)

13 search 2.0.10

Specifies whether
un-indexed fields
should be ignored. A
zero value (default)
throws a diagnostic
when an un-indexed
field is specified. A
non-zero value makes
it return 0 hits.

14 search 2.0.16

Table 5.9: Zebra Search Attribute Extensions

5.3.2.1 Zebra Extension Embedded Sort Attribute (type 7)

The embedded sort is a way to specify sort within a query - thus removing the need to send a Sort Request
separately. It is both faster and does not require clients to deal with the Sort Facility.

All ordering operations are based on a lexicographical ordering, except when the structure attribute
numeric (109) is used. In this case, ordering is numerical. See Section 5.2.4.3.

The possible values after attribute type 7 are 1 ascending and 2 descending. The attributes+term (APT)
node is separate from the rest and must be @or’ed. The term associated with APT is the sorting level in
integers, where 0 means primary sort, 1 means secondary sort, and so forth. See also Section 6.9.

For example, searching for water, sort by title (ascending)

Z> find @or @attr 1=1016 water @attr 7=1 @attr 1=4 0

Or, searching for water, sort by title ascending, then date descending

Z> find @or @or @attr 1=1016 water @attr 7=1 @attr 1=4 0 @attr 7=2 ←↩
@attr 1=30 1

Zebra - User’s Guide and Reference 49 / 143

5.3.2.2 Zebra Extension Rank Weight Attribute (type 9)

Rank weight is a way to pass a value to a ranking algorithm - so that one APT has one value - while another
as a different one. See also Section 6.9.

For example, searching for utah in title with weight 30 as well as any with weight 20:

Z> find @attr 2=102 @or @attr 9=30 @attr 1=4 utah @attr 9=20 utah

5.3.2.3 Zebra Extension Term Reference Attribute (type 10)

Zebra supports the searchResult-1 facility. If the Term Reference Attribute (type 10) is given, that specifies
a subqueryId value returned as part of the search result. It is a way for a client to name an APT part of a
query.

Warning
Experimental. Do not use in production code.

5.3.2.4 Local Approximative Limit Attribute (type 11)

Zebra computes - unless otherwise configured - the exact hit count for every APT (leaf) in the query tree.
These hit counts are returned as part of the searchResult-1 facility in the binary encoded Z39.50 search
response packages.

By setting an estimation limit size of the resultset of the APT leaves, Zebra stops processing the result set
when the limit length is reached. Hit counts under this limit are still precise, but hit counts over it are
estimated using the statistics gathered from the chopped result set.

Specifying a limit of 0 results in exact hit counts.

For example, we might be interested in exact hit count for a, but for b we allow hit count estimates for 1000
and higher.

Z> find @and a @attr 11=1000 b

Note
The estimated hit count facility makes searches faster, as one only needs to process large hit lists partially.
It is mostly used in huge databases, where you you want trade exactness of hit counts against speed of
execution.

Warning
Do not use approximative hit count limits in conjunction with relevance ranking, as re-sorting of the
result set only works when the entire result set has been processed.

5.3.2.5 Global Approximative Limit Attribute (type 12)

By default Zebra computes precise hit counts for a query as a whole. Setting attribute 12 makes it perform
approximative hit counts instead. It has the same semantics as estimatehits for the Section 6.2.

The attribute (12) can occur anywhere in the query tree. Unlike regular attributes it does not relate to the
leaf (APT) - but to the whole query.

Warning
Do not use approximative hit count limits in conjunction with relevance ranking, as re-sorting of the
result set only works when the entire result set has been processed.

5.3.3 Zebra specific Scan Extensions to all Attribute Sets

Zebra extends the Bib1 attribute types, and these extensions are recognized regardless of attribute set used
in a scan operation query.

Name Type Operation Zebra version
Result Set Narrow 8 scan 1.3
Approximative Limit 12 scan 2.0.20

Table 5.10: Zebra Scan Attribute Extensions

5.3.3.1 Zebra Extension Result Set Narrow (type 8)

If attribute Result Set Narrow (type 8) is given for scan, the value is the name of a result set. Each hit count
in scan is @and’ed with the result set given.

Consider for example the case of scanning all title fields around the scanterm mozart, then refining the scan
by issuing a filtering query for amadeus to restrict the scan to the result set of the query:

Z> scan @attr 1=4 mozart
...

* mozart (43)
mozartforskningen (1)
mozartiana (1)
mozarts (16)
...
Z> f @attr 1=4 amadeus
...
Number of hits: 15, setno 2
...
Z> scan @attr 1=4 @attr 8=2 mozart
...

* mozart (14)
mozartforskningen (0)

Zebra - User’s Guide and Reference 51 / 143

mozartiana (0)
mozarts (1)
...

Zebra 2.0.2 and later is able to skip 0 hit counts. This, however, is known not to scale if the number of terms
to skip is high. This most likely will happen if the result set is small (and result in many 0 hits).

5.3.3.2 Zebra Extension Approximative Limit (type 12)

The Zebra Extension Approximative Limit (type 12) is a way to enable approximate hit counts for scan hit
counts, in the same way as for search hit counts.

5.3.4 Zebra special IDXPATH Attribute Set for GRS-1 indexing

The attribute-set idxpath consists of a single Use (type 1) attribute. All non-use attributes behave as
normal.

This feature is enabled when defining the xpath enable option in the GRS-1 filter *.abs configuration
files. If one wants to use the special idxpath numeric attribute set, the main Zebra configuration file
zebra.cfg directive attset: idxpath.att must be enabled.

Warning
The idxpath is deprecated, may not be supported in future Zebra versions, and should definitely
not be used in production code.

5.3.4.1 IDXPATH Use Attributes (type = 1)

This attribute set allows one to search GRS-1 filter indexed records by XPATH like structured index names.

Warning
The idxpath option defines hard-coded index names, which might clash with your own index
names.

See tab/idxpath.att for more information.

Search for all documents starting with root element /root (either using the numeric or the string use
attributes):

Z> find @attrset idxpath @attr 1=1 @attr 4=3 root/
Z> find @attr idxpath 1=1 @attr 4=3 root/
Z> find @attr 1=_XPATH_BEGIN @attr 4=3 root/

Search for all documents where specific nested XPATH /c1/c2/../cn exists. Notice the very counter-
intuitive reverse notation!

IDXPATH Value String Index Notes
XPATH Begin 1 _XPATH_BEGIN deprecated
XPATH End 2 _XPATH_END deprecated
XPATH CData 1016 _XPATH_CDATA deprecated
XPATH Attribute
Name

3 _XPATH_ATTR_NAME deprecated

XPATH Attribute
CData

1015 _XPATH_ATTR_CDATAdeprecated

Table 5.11: Zebra specific IDXPATH Use Attributes (type 1)

Z> find @attrset idxpath @attr 1=1 @attr 4=3 cn/cn-1/../c1/
Z> find @attr 1=_XPATH_BEGIN @attr 4=3 cn/cn-1/../c1/

Search for CDATA string text in any element

Z> find @attrset idxpath @attr 1=1016 text
Z> find @attr 1=_XPATH_CDATA text

Search for CDATA string anothertext in any attribute:

Z> find @attrset idxpath @attr 1=1015 anothertext
Z> find @attr 1=_XPATH_ATTR_CDATA anothertext

Search for all documents with have an XML element node including an XML attribute named creator

Z> find @attrset idxpath @attr 1=3 @attr 4=3 creator
Z> find @attr 1=_XPATH_ATTR_NAME @attr 4=3 creator

Combining usual bib-1 attribute set searches with idxpath attribute set searches:

Z> find @and @attr idxpath 1=1 @attr 4=3 link/ @attr 1=4 mozart
Z> find @and @attr 1=_XPATH_BEGIN @attr 4=3 link/ @attr 1= ←↩

_XPATH_CDATA mozart

Scanning is supported on all idxpath indexes, both specified as numeric use attributes, or as string index
names.

Z> scan @attrset idxpath @attr 1=1016 text
Z> scan @attr 1=_XPATH_ATTR_CDATA anothertext
Z> scan @attrset idxpath @attr 1=3 @attr 4=3 ’’

5.3.5 Mapping from PQF atomic APT queries to Zebra internal register indexes

The rules for PQF APT mapping are rather tricky to grasp in the first place. We deal first with the rules
for deciding which internal register or string index to use, according to the use attribute or access point
specified in the query. Thereafter we deal with the rules for determining the correct structure type of the
named register.

Zebra - User’s Guide and Reference 53 / 143

5.3.5.1 Mapping of PQF APT access points

Zebra understands four fundamental different types of access points, of which only the numeric use attribute
type access points are defined by the Z39.50 standard. All other access point types are Zebra specific, and
non-portable.

Access Point Type Grammar Notes

Use attribute numeric [1-9][1-9]*
directly mapped to
string index name

String index name string
[a-zA-Z](\-?[a-zA-Z0-
9])*

normalized name is
used as internal string
index name

Zebra internal index
name

zebra
[a-zA-Z](?[a-zA-Z0-
9])*

hardwired internal
string index name

XPATH special index XPath /.*
special xpath search for
GRS-1 indexed records

Table 5.12: Access point name mapping

Attribute set names and string index names are normalizes according to the following rules:
all single hyphens ’-’ are stripped, and all upper case letters are folded to lower case.

Numeric use attributes are mapped to the Zebra internal string index according to the attribute set definition
in use. The default attribute set is BIB-1, and may be omitted in the PQF query.

According to normalization and numeric use attribute mapping, it follows that the following PQF queries
are considered equivalent (assuming the default configuration has not been altered):

Z> find @attr 1=Body-of-text serenade
Z> find @attr 1=bodyoftext serenade
Z> find @attr 1=BodyOfText serenade
Z> find @attr 1=bO-d-Y-of-tE-x-t serenade
Z> find @attr 1=1010 serenade
Z> find @attrset bib1 @attr 1=1010 serenade
Z> find @attrset bib1 @attr 1=1010 serenade
Z> find @attrset Bib1 @attr 1=1010 serenade
Z> find @attrset b-I-b-1 @attr 1=1010 serenade

The numerical use attributes (type 1) are interpreted according to the attribute sets which have
been loaded in the zebra.cfg file, and are matched against specific fields as specified in the .abs file
which describes the profile of the records which have been loaded. If no use attribute is provided, a default
of BIB-1 Use Any (1016) is assumed. The predefined use attribute sets can be reconfigured by tweaking
the configuration files tab/*.att, and new attribute sets can be defined by adding similar files in the
configuration path profilePath of the server.

String indexes can be accessed directly, independently which attribute set is in use. These are just ignored.
The above mentioned name normalization applies. String index names are defined in the used indexing
filter configuration files, for example in the GRS-1 *.abs configuration files, or in the alvis filter XSLT
indexing stylesheets.

https://www.loc.gov/z3950/agency/

Zebra internal indexes can be accessed directly, according to the same rules as the user defined string
indexes. The only difference is that Zebra internal index names are hardwired, all uppercase and must start
with the character ’_’.

Finally, XPATH access points are only available using the GRS-1 filter for indexing. These access point
names must start with the character ’/’, they are not normalized, but passed unaltered to the Zebra internal
XPATH engine. See Section 5.2.1.6.

5.3.5.2 Mapping of PQF APT structure and completeness to register type

Internally Zebra has in its default configuration several different types of registers or indexes, whose tok-
enization and character normalization rules differ. This reflects the fact that searching fundamental different
tokens like dates, numbers, bitfields and string based text needs different rule sets.

If a Structure attribute of Phrase is used in conjunction with a Completeness attribute of Complete (Sub)field,
the term is matched against the contents of the phrase (long word) register, if one exists for the given Use
attribute. A phrase register is created for those fields in the GRS-1 *.abs file that contains a p-specifier.

Z> scan @attr 1=Title @attr 4=1 @attr 6=3 beethoven
...
bayreuther festspiele (1)

* beethoven bibliography database (1)
benny carter (1)
...
Z> find @attr 1=Title @attr 4=1 @attr 6=3 "beethoven bibliography"
...
Number of hits: 0, setno 5
...
Z> find @attr 1=Title @attr 4=1 @attr 6=3 "beethoven bibliography ←↩

database"
...
Number of hits: 1, setno 6

If Structure=Phrase is used in conjunction with Incomplete Field - the default value for Completeness, the
search is directed against the normal word registers, but if the term contains multiple words, the term will
only match if all of the words are found immediately adjacent, and in the given order. The word search is
performed on those fields that are indexed as type w in the GRS-1 *.abs file.

Z> scan @attr 1=Title @attr 4=1 @attr 6=1 beethoven
...
beefheart (1)

* beethoven (18)
beethovens (7)
...
Z> find @attr 1=Title @attr 4=1 @attr 6=1 beethoven
...
Number of hits: 18, setno 1
...
Z> find @attr 1=Title @attr 4=1 @attr 6=1 "beethoven bibliography"
...
Number of hits: 2, setno 2

Zebra - User’s Guide and Reference 55 / 143

Structure Completeness Register type Notes
phrase (@attr 4=1),
word (@attr 4=2),
word-list (@attr 4=6),
free-form-text (@attr
4=105), or
document-text (@attr
4=106)

Incomplete field (@attr
6=1)

Word (’w’)
Traditional tokenized
and character
normalized word index

phrase (@attr 4=1),
word (@attr 4=2),
word-list (@attr 4=6),
free-form-text (@attr
4=105), or
document-text (@attr
4=106)

complete field’ (@attr
6=3)

Phrase (’p’)
Character normalized,
but not tokenized index
for phrase matches

urx (@attr 4=104) ignored URX/URL (’u’)
Special index for URL
web addresses

numeric (@attr 4=109) ignored Numeric (’n’)
Special index for
digital numbers

key (@attr 4=3) ignored Null bitmap (’0’)
Used for non-tokenized
and non-normalized bit
sequences

year (@attr 4=4) ignored Year (’y’)
Non-tokenized and
non-normalized 4 digit
numbers

date (@attr 4=5) ignored Date (’d’)
Non-tokenized and
non-normalized ISO
date strings

ignored ignored Sort (’s’)
Used with special sort
attribute set (@attr
7=1, @attr 7=2)

overruled overruled special

Internal record ID
register, used whenever
Relation Always
Matches (@attr 2=103)
is specified

Table 5.13: Structure and completeness mapping to register types

...

If the Structure attribute is Word List, Free-form Text, or Document Text, the term is treated as a natural-
language, relevance-ranked query. This search type uses the word register, i.e. those fields that are indexed
as type w in the GRS-1 *.abs file.

If the Structure attribute is Numeric String the term is treated as an integer. The search is performed on
those fields that are indexed as type n in the GRS-1 *.abs file.

If the Structure attribute is URX the term is treated as a URX (URL) entity. The search is performed on
those fields that are indexed as type u in the *.abs file.

If the Structure attribute is Local Number the term is treated as native Zebra Record Identifier.

If the Relation attribute is Equals (default), the term is matched in a normal fashion (modulo truncation
and processing of individual words, if required). If Relation is Less Than, Less Than or Equal, Greater
than, or Greater than or Equal, the term is assumed to be numerical, and a standard regular expression is
constructed to match the given expression. If Relation is Relevance, the standard natural-language query
processor is invoked.

For the Truncation attribute, No Truncation is the default. Left Truncation is not supported. Process # in
search term is supported, as is Regxp-1. Regxp-2 enables the fault-tolerant (fuzzy) search. As a default,
a single error (deletion, insertion, replacement) is accepted when terms are matched against the register
contents.

5.3.6 Zebra Regular Expressions in Truncation Attribute (type = 5)

Each term in a query is interpreted as a regular expression if the truncation value is either Regxp-1 (@attr
5=102) or Regxp-2 (@attr 5=103). Both query types follow the same syntax with the operands:

x Matches the character x.
. Matches any character.

[..]
Matches the set of characters specified; such as
[abc] or [a-c].

Table 5.14: Regular Expression Operands

The above operands can be combined with the following operators:

x* Matches x zero or more times. Priority: high.
x+ Matches x one or more times. Priority: high.
x? Matches x zero or once. Priority: high.
xy Matches x, then y. Priority: medium.
x|y Matches either x or y. Priority: low.

()
The order of evaluation may be changed by using
parentheses.

Table 5.15: Regular Expression Operators

Zebra - User’s Guide and Reference 57 / 143

If the first character of the Regxp-2 query is a plus character (+) it marks the beginning of a section with
non-standard specifiers. The next plus character marks the end of the section. Currently Zebra only supports
one specifier, the error tolerance, which consists one digit.

Since the plus operator is normally a suffix operator the addition to the query syntax doesn’t violate the
syntax for standard regular expressions.

For example, a phrase search with regular expressions in the title-register is performed like this:

Z> find @attr 1=4 @attr 5=102 "informat.* retrieval"

Combinations with other attributes are possible. For example, a ranked search with a regular expression:

Z> find @attr 1=4 @attr 5=102 @attr 2=102 "informat.* retrieval"

5.4 Server Side CQL to PQF Query Translation

Using the <cql2rpn>l2rpn.txt</cql2rpn> YAZ Frontend Virtual Hosts option, one can configure
the YAZ Frontend CQL-to-PQF converter, specifying the interpretation of various CQL indexes, relations,
etc. in terms of Type-1 query attributes.

For example, using server-side CQL-to-PQF conversion, one might query a zebra server like this:

yaz-client localhost:9999
Z> querytype cql
Z> find text=(plant and soil)

and - if properly configured - even static relevance ranking can be performed using CQL query syntax:

Z> find text = /relevant (plant and soil)

By the way, the same configuration can be used to search using client-side CQL-to-PQF conversion: (the
only difference is querytype cql2rpn instead of querytype cql, and the call specifying a local
conversion file)

yaz-client -q local/cql2pqf.txt localhost:9999
Z> querytype cql2rpn
Z> find text=(plant and soil)

Exhaustive information can be found in the Section CQL to RPN conversion in the YAZ manual.

http://www.loc.gov/standards/sru/cql/
http://www.indexdata.com/yaz/doc/tools.html#cql.to.pqf

Zebra - User’s Guide and Reference 59 / 143

Chapter 6

Administrating Zebra

Unlike many simpler retrieval systems, Zebra supports safe, incremental updates to an existing index.

Normally, when Zebra modifies the index it reads a number of records that you specify. Depending on your
specifications and on the contents of each record one the following events take place for each record:

Insert The record is indexed as if it never occurred before. Either the Zebra system doesn’t know how to
identify the record or Zebra can identify the record but didn’t find it to be already indexed.

Modify The record has already been indexed. In this case either the contents of the record or the location
(file) of the record indicates that it has been indexed before.

Delete The record is deleted from the index. As in the update-case it must be able to identify the record.

Please note that in both the modify- and delete- case the Zebra indexer must be able to generate a unique
key that identifies the record in question (more on this below).

To administrate the Zebra retrieval system, you run the zebraidx program. This program supports a
number of options which are preceded by a dash, and a few commands (not preceded by dash).

Both the Zebra administrative tool and the Z39.50 server share a set of index files and a global configu-
ration file. The name of the configuration file defaults to zebra.cfg. The configuration file includes
specifications on how to index various kinds of records and where the other configuration files are located.
zebrasrv and zebraidx must be run in the directory where the configuration file lives unless you
indicate the location of the configuration file by option -c.

6.1 Record Types

Indexing is a per-record process, in which either insert/modify/delete will occur. Before a record is indexed
search keys are extracted from whatever might be the layout the original record (sgml,html,text, etc..). The
Zebra system currently supports two fundamental types of records: structured and simple text. To specify a
particular extraction process, use either the command line option -t or specify a recordType setting in
the configuration file.

6.2 The Zebra Configuration File

The Zebra configuration file, read by zebraidx and zebrasrv defaults to zebra.cfg unless specified
by -c option.

You can edit the configuration file with a normal text editor. parameter names and values are separated by
colons in the file. Lines starting with a hash sign (#) are treated as comments.

If you manage different sets of records that share common characteristics, you can organize the configura-
tion settings for each type into "groups". When zebraidx is run and you wish to address a given group
you specify the group name with the -g option. In this case settings that have the group name as their prefix
will be used by zebraidx. If no -g option is specified, the settings without prefix are used.

In the configuration file, the group name is placed before the option name itself, separated by a dot (.). For
instance, to set the record type for group public to grs.sgml (the SGML-like format for structured
records) you would write:

public.recordType: grs.sgml

To set the default value of the record type to text write:

recordType: text

The available configuration settings are summarized below. They will be explained further in the following
sections.

group .recordType[.name]: type Specifies how records with the file extension name should be handled
by the indexer. This option may also be specified as a command line option (-t). Note that if you do
not specify a name, the setting applies to all files. In general, the record type specifier consists of the
elements (each element separated by dot), fundamental-type, file-read-type and arguments. Currently,
two fundamental types exist, text and grs.

group.recordId: record-id-spec Specifies how the records are to be identified when updated. See
Section 6.3.

group.database: database Specifies the Z39.50 database name.

group.storeKeys: boolean Specifies whether key information should be saved for a given group of records.
If you plan to update/delete this type of records later this should be specified as 1; otherwise it should
be 0 (default), to save register space. See Section 6.5.

group.storeData: boolean Specifies whether the records should be stored internally in the Zebra system
files. If you want to maintain the raw records yourself, this option should be false (0). If you want
Zebra to take care of the records for you, it should be true(1).

register: register-location Specifies the location of the various register files that Zebra uses to rep-
resent your databases. See Section 6.7.

shadow: register-location Enables the safe update facility of Zebra, and tells the system where to
place the required, temporary files. See Section 6.8.

Zebra - User’s Guide and Reference 61 / 143

lockDir: directory Directory in which various lock files are stored.

keyTmpDir: directory Directory in which temporary files used during zebraidx’s update phase are
stored.

setTmpDir: directory Specifies the directory that the server uses for temporary result sets. If not spec-
ified /tmp will be used.

profilePath: path Specifies a path of profile specification files. The path is composed of one or more
directories separated by colon. Similar to PATH for UNIX systems.

modulePath: path Specifies a path of record filter modules. The path is composed of one or more direc-
tories separated by colon. Similar to PATH for UNIX systems. The ’make install’ procedure typically
puts modules in /usr/local/lib/idzebra-2.0/modules.

index: filename Defines the filename which holds fields structure definitions. If omitted, the file default.
idx is read. Refer to Section 10.1 for more information.

sortmax: integer Specifies the maximum number of records that will be sorted in a result set. If the
result set contains more than integer records, records after the limit will not be sorted. If omitted,
the default value is 1,000.

staticrank: integer Enables whether static ranking is to be enabled (1) or disabled (0). If omitted, it is
disabled - corresponding to a value of 0. Refer to Section 6.9.2 .

estimatehits: integer Controls whether Zebra should calculate approximate hit counts and at which hit
count it is to be enabled. A value of 0 disables approximate hit counts. For a positive value approxi-
mate hit count is enabled if it is known to be larger than integer.

Approximate hit counts can also be triggered by a particular attribute in a query. Refer to Sec-
tion 5.3.2.5.

attset: filename Specifies the filename(s) of attribute set files for use in searching. In many config-
urations bib1.att is used, but that is not required. If Classic Explain attributes is to be used
for searching, explain.att must be given. The path to att-files in general can be given using
profilePath setting. See also Section 9.3.4.

memMax: size Specifies size of internal memory to use for the zebraidx program. The amount is given
in megabytes - default is 8 (8 MB). The more memory, the faster large updates happen, up to about
half the free memory available on the computer.

tempfiles: Yes/Auto/No Tells zebra if it should use temporary files when indexing. The default is Auto,
in which case zebra uses temporary files only if it would need more that memMax megabytes of
memory. This should be good for most uses.

root: dir Specifies a directory base for Zebra. All relative paths given (in profilePath, register, shadow)
are based on this directory. This setting is useful if your Zebra server is running in a different directory
from where zebra.cfg is located.

passwd: file Specifies a file with description of user accounts for Zebra. The format is similar to that
known to Apache’s htpasswd files and UNIX’ passwd files. Non-empty lines not beginning with #
are considered account lines. There is one account per-line. A line consists of fields separate by a
single colon character. First field is username, second is password.

passwd.c: file Specifies a file with description of user accounts for Zebra. File format is similar to that
used by the passwd directive except that the password are encrypted. Use Apache’s htpasswd or
similar for maintenance.

perm.user: permstring Specifies permissions (privilege) for a user that are allowed to access Zebra via
the passwd system. There are two kinds of permissions currently: read (r) and write(w). By default
users not listed in a permission directive are given the read privilege. To specify permissions for a
user with no username, or Z39.50 anonymous style use anonymous. The permstring consists of a
sequence of characters. Include character w for write/update access, r for read access and a to allow
anonymous access through this account.

dbaccess: accessfile Names a file which lists database subscriptions for individual users. The ac-
cess file should consists of lines of the form username: dbnames, where dbnames is a list
of database names, separated by ’+’. No whitespace is allowed in the database list.

encoding: charsetname Tells Zebra to interpret the terms in Z39.50 queries as having been encoded us-
ing the specified character encoding. The default is ISO-8859-1; one useful alternative is UTF-8.

storeKeys: value Specifies whether Zebra keeps a copy of indexed keys. Use a value of 1 to enable; 0
to disable. If storeKeys setting is omitted, it is enabled. Enabled storeKeys are required for updating
and deleting records. Disable only storeKeys to save space and only plan to index data once.

storeData: value Specifies whether Zebra keeps a copy of indexed records. Use a value of 1 to enable;
0 to disable. If storeData setting is omitted, it is enabled. A storeData setting of 0 (disabled) makes
Zebra fetch records from the original locaction in the file system using filename, file offset and file
length. For the DOM and ALVIS filter, the storeData setting is ignored.

6.3 Locating Records

The default behavior of the Zebra system is to reference the records from their original location, i.e. where
they were found when you run zebraidx. That is, when a client wishes to retrieve a record following a
search operation, the files are accessed from the place where you originally put them - if you remove the
files (without running zebraidx again, the server will return diagnostic number 14 (``System error in
presenting records”) to the client.

If your input files are not permanent - for example if you retrieve your records from an outside source, or
if they were temporarily mounted on a CD-ROM drive, you may want Zebra to make an internal copy of
them. To do this, you specify 1 (true) in the storeData setting. When the Z39.50 server retrieves the
records they will be read from the internal file structures of the system.

6.4 Indexing with no Record IDs (Simple Indexing)

If you have a set of records that are not expected to change over time you may can build your database
without record IDs. This indexing method uses less space than the other methods and is simple to use.

To use this method, you simply omit the recordId entry for the group of files that you index. To add a
set of records you use zebraidx with the update command. The update command will always add

Zebra - User’s Guide and Reference 63 / 143

all of the records that it encounters to the index - whether they have already been indexed or not. If the set
of indexed files change, you should delete all of the index files, and build a new index from scratch.

Consider a system in which you have a group of text files called simple. That group of records should
belong to a Z39.50 database called textbase. The following zebra.cfg file will suffice:

profilePath: /usr/local/idzebra/tab
attset: bib1.att
simple.recordType: text
simple.database: textbase

Since the existing records in an index can not be addressed by their IDs, it is impossible to delete or modify
records when using this method.

6.5 Indexing with File Record IDs

If you have a set of files that regularly change over time: Old files are deleted, new ones are added, or
existing files are modified, you can benefit from using the file ID indexing methodology. Examples of
this type of database might include an index of WWW resources, or a USENET news spool area. Briefly
speaking, the file key methodology uses the directory paths of the individual records as a unique identifier
for each record. To perform indexing of a directory with file keys, again, you specify the top-level directory
after the update command. The command will recursively traverse the directories and compare each one
with whatever have been indexed before in that same directory. If a file is new (not in the previous version
of the directory) it is inserted into the registers; if a file was already indexed and it has been modified since
the last update, the index is also modified; if a file has been removed since the last visit, it is deleted from
the index.

The resulting system is easy to administrate. To delete a record you simply have to delete the corresponding
file (say, with the rm command). And to add records you create new files (or directories with files). For
your changes to take effect in the register you must run zebraidx update with the same directory root
again. This mode of operation requires more disk space than simpler indexing methods, but it makes it
easier for you to keep the index in sync with a frequently changing set of data. If you combine this system
with the safe update facility (see below), you never have to take your server off-line for maintenance or
register updating purposes.

To enable indexing with pathname IDs, you must specify file as the value of recordId in the config-
uration file. In addition, you should set storeKeys to 1, since the Zebra indexer must save additional
information about the contents of each record in order to modify the indexes correctly at a later time.

For example, to update records of group esdd located below /data1/records/ you should type:

$ zebraidx -g esdd update /data1/records

The corresponding configuration file includes:

esdd.recordId: file
esdd.recordType: grs.sgml
esdd.storeKeys: 1

Note
You cannot start out with a group of records with simple indexing (no record IDs as in the previous section)
and then later enable file record Ids. Zebra must know from the first time that you index the group that the
files should be indexed with file record IDs.

You cannot explicitly delete records when using this method (using the delete command to zebraidx.
Instead you have to delete the files from the file system (or move them to a different location) and then run
zebraidx with the update command.

6.6 Indexing with General Record IDs

When using this method you construct an (almost) arbitrary, internal record key based on the contents of
the record itself and other system information. If you have a group of records that explicitly associates an
ID with each record, this method is convenient. For example, the record format may contain a title or a
ID-number - unique within the group. In either case you specify the Z39.50 attribute set and use-attribute
location in which this information is stored, and the system looks at that field to determine the identity of
the record.

As before, the record ID is defined by the recordId setting in the configuration file. The value of the
record ID specification consists of one or more tokens separated by whitespace. The resulting ID is repre-
sented in the index by concatenating the tokens and separating them by ASCII value (1).

There are three kinds of tokens:

Internal record info The token refers to a key that is extracted from the record. The syntax of this token
is (set , use), where set is the attribute set name use is the name or value of the attribute.

System variable The system variables are preceded by

$

and immediately followed by the system variable name, which may one of

group Group name.

database Current database specified.

type Record type.

Constant string A string used as part of the ID — surrounded by single- or double quotes.

For instance, the sample GILS records that come with the Zebra distribution contain a unique ID in the data
tagged Control-Identifier. The data is mapped to the BIB-1 use attribute Identifier-standard (code 1007). To
use this field as a record id, specify (bib1,Identifier-standard) as the value of the recordId
in the configuration file. If you have other record types that uses the same field for a different purpose, you
might add the record type (or group or database name) to the record id of the gils records as well, to prevent
matches with other types of records. In this case the recordId might be set like this:

Zebra - User’s Guide and Reference 65 / 143

gils.recordId: $type (bib1,Identifier-standard)

(see Chapter 9 for details of how the mapping between elements of your records and searchable attributes
is established).

As for the file record ID case described in the previous section, updating your system is simply a matter of
running zebraidx with the update command. However, the update with general keys is considerably
slower than with file record IDs, since all files visited must be (re)read to discover their IDs.

As you might expect, when using the general record IDs method, you can only add or modify existing
records with the update command. If you wish to delete records, you must use the, delete command,
with a directory as a parameter. This will remove all records that match the files below that root directory.

6.7 Register Location

Normally, the index files that form dictionaries, inverted files, record info, etc., are stored in the directory
where you run zebraidx. If you wish to store these, possibly large, files somewhere else, you must add
the register entry to the zebra.cfg file. Furthermore, the Zebra system allows its file structures to
span multiple file systems, which is useful for managing very large databases.

The value of the register setting is a sequence of tokens. Each token takes the form: dir:size The dir
specifies a directory in which index files will be stored and the size specifies the maximum size of all files in
that directory. The Zebra indexer system fills each directory in the order specified and use the next specified
directories as needed. The size is an integer followed by a qualifier code, b for bytes, k for kilobytes. M for
megabytes, G for gigabytes. Specifying a negative value disables the checking (it still needs the unit, use
-1b).

For instance, if you have allocated three disks for your register, and the first disk is mounted on /d1 and
has 2GB of free space, the second, mounted on /d2 has 3.6 GB, and the third, on which you have more
space than you bother to worry about, mounted on /d3 you could put this entry in your configuration file:

register: /d1:2G /d2:3600M /d3:-1b

Note that Zebra does not verify that the amount of space specified is actually available on the directory
(file system) specified - it is your responsibility to ensure that enough space is available, and that other
applications do not attempt to use the free space. In a large production system, it is recommended that you
allocate one or more file system exclusively to the Zebra register files.

6.8 Safe Updating - Using Shadow Registers

6.8.1 Description

The Zebra server supports updating of the index structures. That is, you can add, modify, or remove
records from databases managed by Zebra without rebuilding the entire index. Since this process involves
modifying structured files with various references between blocks of data in the files, the update process is
inherently sensitive to system crashes, or to process interruptions: Anything but a successfully completed

update process will leave the register files in an unknown state, and you will essentially have no recourse
but to re-index everything, or to restore the register files from a backup medium. Further, while the update
process is active, users cannot be allowed to access the system, as the contents of the register files may
change unpredictably.

You can solve these problems by enabling the shadow register system in Zebra. During the updating pro-
cedure, zebraidx will temporarily write changes to the involved files in a set of "shadow files", without
modifying the files that are accessed by the active server processes. If the update procedure is interrupted
by a system crash or a signal, you simply repeat the procedure - the register files have not been changed or
damaged, and the partially written shadow files are automatically deleted before the new updating procedure
commences.

At the end of the updating procedure (or in a separate operation, if you so desire), the system enters a
"commit mode". First, any active server processes are forced to access those blocks that have been changed
from the shadow files rather than from the main register files; the unmodified blocks are still accessed at
their normal location (the shadow files are not a complete copy of the register files - they only contain
those parts that have actually been modified). If the commit process is interrupted at any point during
the commit process, the server processes will continue to access the shadow files until you can repeat the
commit procedure and complete the writing of data to the main register files. You can perform multiple
update operations to the registers before you commit the changes to the system files, or you can execute the
commit operation at the end of each update operation. When the commit phase has completed successfully,
any running server processes are instructed to switch their operations to the new, operational register, and
the temporary shadow files are deleted.

6.8.2 How to Use Shadow Register Files

The first step is to allocate space on your system for the shadow files. You do this by adding a shadow
entry to the zebra.cfg file. The syntax of the shadow entry is exactly the same as for the register
entry (see Section 6.7). The location of the shadow area should be different from the location of the main
register area (if you have specified one - remember that if you provide no register setting, the default
register area is the working directory of the server and indexing processes).

The following excerpt from a zebra.cfg file shows one example of a setup that configures both the main
register location and the shadow file area. Note that two directories or partitions have been set aside for
the shadow file area. You can specify any number of directories for each of the file areas, but remember
that there should be no overlaps between the directories used for the main registers and the shadow files,
respectively.

register: /d1:500M
shadow: /scratch1:100M /scratch2:200M

When shadow files are enabled, an extra command is available at the zebraidx command line. In order
to make changes to the system take effect for the users, you’ll have to submit a "commit" command after a
(sequence of) update operation(s).

$ zebraidx update /d1/records
$ zebraidx commit

Or you can execute multiple updates before committing the changes:

Zebra - User’s Guide and Reference 67 / 143

$ zebraidx -g books update /d1/records /d2/more-records
$ zebraidx -g fun update /d3/fun-records
$ zebraidx commit

If one of the update operations above had been interrupted, the commit operation on the last line would fail:
zebraidx will not let you commit changes that would destroy the running register. You’ll have to rerun
all of the update operations since your last commit operation, before you can commit the new changes.

Similarly, if the commit operation fails, zebraidx will not let you start a new update operation before
you have successfully repeated the commit operation. The server processes will keep accessing the shadow
files rather than the (possibly damaged) blocks of the main register files until the commit operation has
successfully completed.

You should be aware that update operations may take slightly longer when the shadow register system
is enabled, since more file access operations are involved. Further, while the disk space required for the
shadow register data is modest for a small update operation, you may prefer to disable the system if you are
adding a very large number of records to an already very large database (we use the terms large and modest
very loosely here, since every application will have a different perception of size). To update the system
without the use of the the shadow files, simply run zebraidx with the -n option (note that you do not
have to execute the commit command of zebraidx when you temporarily disable the use of the shadow
registers in this fashion. Note also that, just as when the shadow registers are not enabled, server processes
will be barred from accessing the main register while the update procedure takes place.

6.9 Relevance Ranking and Sorting of Result Sets

6.9.1 Overview

The default ordering of a result set is left up to the server, which inside Zebra means sorting in ascending
document ID order. This is not always the order humans want to browse the sometimes quite large hit sets.
Ranking and sorting comes to the rescue.

In cases where a good presentation ordering can be computed at indexing time, we can use a fixed static
ranking scheme, which is provided for the alvis indexing filter. This defines a fixed ordering of hit
lists, independently of the query issued.

There are cases, however, where relevance of hit set documents is highly dependent on the query processed.
Simply put, dynamic relevance ranking sorts a set of retrieved records such that those most likely
to be relevant to your request are retrieved first. Internally, Zebra retrieves all documents that satisfy your
query, and re-orders the hit list to arrange them based on a measurement of similarity between your query
and the content of each record.

Finally, there are situations where hit sets of documents should be sorted during query time according to
the lexicographical ordering of certain sort indexes created at indexing time.

6.9.2 Static Ranking

Zebra uses internally inverted indexes to look up term frequencies in documents. Multiple queries from
different indexes can be combined by the binary boolean operations AND, OR and/or NOT (which is in fact

a binary AND NOT operation). To ensure fast query execution speed, all indexes have to be sorted in the
same order.

The indexes are normally sorted according to document ID in ascending order, and any query which does
not invoke a special re-ranking function will therefore retrieve the result set in document ID order.

If one defines the

staticrank: 1

directive in the main core Zebra configuration file, the internal document keys used for ordering are aug-
mented by a preceding integer, which contains the static rank of a given document, and the index lists are
ordered first by ascending static rank, then by ascending document ID. Zero is the ``best” rank, as it occurs
at the beginning of the list; higher numbers represent worse scores.

The experimental alvis filter provides a directive to fetch static rank information out of the indexed XML
records, thus making all hit sets ordered after ascending static rank, and for those doc’s which have the
same static rank, ordered after ascending doc ID. See Chapter 8 for the gory details.

6.9.3 Dynamic Ranking

In order to fiddle with the static rank order, it is necessary to invoke additional re-ranking/re-ordering using
dynamic ranking or score functions. These functions return positive integer scores, where highest score is
``best”; hit sets are sorted according to descending scores (in contrary to the index lists which are sorted
according to ascending rank number and document ID).

Dynamic ranking is enabled by a directive like one of the following in the zebra configuration file (use only
one of these a time!):

rank: rank-1 # default TDF-IDF like
rank: rank-static # dummy do-nothing

Dynamic ranking is done at query time rather than indexing time (this is why we call it ``dynamic ranking”
in the first place ...) It is invoked by adding the BIB-1 relation attribute with value ``relevance” to the PQF
query (that is, @attr 2=102, see also The BIB-1 Attribute Set Semantics, also in HTML). To find all
articles with the word Eoraptor in the title, and present them relevance ranked, issue the PQF query:

@attr 2=102 @attr 1=4 Eoraptor

6.9.3.1 Dynamically ranking using PQF queries with the ’rank-1’ algorithm

The default rank-1 ranking module implements a TF/IDF (Term Frequecy over Inverse Document Fre-
quency) like algorithm. In contrast to the usual definition of TF/IDF algorithms, which only considers
searching in one full-text index, this one works on multiple indexes at the same time. More precisely, Zebra
does boolean queries and searches in specific addressed indexes (there are inverted indexes pointing from
terms in the dictionary to documents and term positions inside documents). It works like this:

Query Components First, the boolean query is dismantled into its principal components, i.e. atomic
queries where one term is looked up in one index. For example, the query

https://www.loc.gov/z3950/agency/bib1.html
https://www.loc.gov/z3950/agency/defns/bib1.html

Zebra - User’s Guide and Reference 69 / 143

@attr 2=102 @and @attr 1=1010 Utah @attr 1=1018 Springer

is a boolean AND between the atomic parts

@attr 2=102 @attr 1=1010 Utah

and

@attr 2=102 @attr 1=1018 Springer

which gets processed each for itself.

Atomic hit lists Second, for each atomic query, the hit list of documents is computed.

In this example, two hit lists for each index @attr 1=1010 and @attr 1=1018 are computed.

Atomic scores Third, each document in the hit list is assigned a score (_if_ ranking is enabled and re-
quested in the query) using a TF/IDF scheme.

In this example, both atomic parts of the query assign the magic @attr 2=102 relevance attribute,
and are to be used in the relevance ranking functions.

It is possible to apply dynamic ranking on only parts of the PQF query:

@and @attr 2=102 @attr 1=1010 Utah @attr 1=1018 Springer

searches for all documents which have the term ’Utah’ on the body of text, and which have the term
’Springer’ in the publisher field, and sort them in the order of the relevance ranking made on the
body-of-text index only.

Hit list merging Fourth, the atomic hit lists are merged according to the boolean conditions to a final hit
list of documents to be returned.

This step is always performed, independently of the fact that dynamic ranking is enabled or not.

Document score computation Fifth, the total score of a document is computed as a linear combination of
the atomic scores of the atomic hit lists

Ranking weights may be used to pass a value to a ranking algorithm, using the non-standard BIB-1
attribute type 9. This allows one branch of a query to use one value while another branch uses a
different one. For example, we can search for utah in the @attr 1=4 index with weight 30, as
well as in the @attr 1=1010 index with weight 20:

@attr 2=102 @or @attr 9=30 @attr 1=4 utah @attr 9=20 @attr 1=1010 ←↩
city

The default weight is sqrt(1000) ~ 34 , as the Z39.50 standard prescribes that the top score is 1000
and the bottom score is 0, encoded in integers.

Warning
The ranking-weight feature is experimental. It may change in future releases of zebra.

Re-sorting of hit list Finally, the final hit list is re-ordered according to scores.

The rank-1 algorithm does not use the static rank information in the list keys, and will produce the same
ordering with or without static ranking enabled.

Warning
Dynamic ranking is not compatible with estimated hit sizes, as all documents in a
hit set must be accessed to compute the correct placing in a ranking sorted list. Therefore the use
attribute setting @attr 2=102 clashes with @attr 9=integer.

6.9.3.2 Dynamically ranking CQL queries

Dynamic ranking can be enabled during sever side CQL query expansion by adding @attr 2=102 chunks
to the CQL config file. For example

relationModifier.relevant = 2=102

invokes dynamic ranking each time a CQL query of the form

Z> querytype cql
Z> f alvis.text =/relevant house

is issued. Dynamic ranking can also be automatically used on specific CQL indexes by (for example) setting

index.alvis.text = 1=text 2=102

which then invokes dynamic ranking each time a CQL query of the form

Z> querytype cql
Z> f alvis.text = house

is issued.

6.9.4 Sorting

Zebra sorts efficiently using special sorting indexes (type=s; so each sortable index must be known at
indexing time, specified in the configuration of record indexing. For example, to enable sorting according
to the BIB-1 Date/time-added-to-db field, one could add the line

xelm /*/@created Date/time-added-to-db:s

to any .abs record-indexing configuration file. Similarly, one could add an indexing element of the form

<z:index name="date-modified" type="s">
<xsl:value-of select="some/xpath"/>

</z:index>

Zebra - User’s Guide and Reference 71 / 143

to any alvis-filter indexing stylesheet.

Indexing can be specified at searching time using a query term carrying the non-standard BIB-1 attribute-
type 7. This removes the need to send a Z39.50 Sort Request separately, and can dramatically improve
latency when the client and server are on separate networks. The sorting part of the query is separate from
the rest of the query - the actual search specification - and must be combined with it using OR.

A sorting subquery needs two attributes: an index (such as a BIB-1 type-1 attribute) specifying which index
to sort on, and a type-7 attribute whose value is be 1 for ascending sorting, or 2 for descending. The term
associated with the sorting attribute is the priority of the sort key, where 0 specifies the primary sort key, 1
the secondary sort key, and so on.

For example, a search for water, sort by title (ascending), is expressed by the PQF query

@or @attr 1=1016 water @attr 7=1 @attr 1=4 0

whereas a search for water, sort by title ascending, then date descending would be

@or @or @attr 1=1016 water @attr 7=1 @attr 1=4 0 @attr 7=2 @attr 1=30 ←↩
1

Notice the fundamental differences between dynamic ranking and sorting: there can be only one
ranking function defined and configured; but multiple sorting indexes can be specified dynamically at search
time. Ranking does not need to use specific indexes, so dynamic ranking can be enabled and disabled
without re-indexing; whereas, sorting indexes need to be defined before indexing.

6.10 Extended Services: Remote Insert, Update and Delete

Note
Extended services are only supported when accessing the Zebra server using the Z39.50 protocol. The
SRU protocol does not support extended services.

The extended services are not enabled by default in zebra - due to the fact that they modify the system.
Zebra can be configured to allow anybody to search, and to allow only updates for a particular admin user
in the main zebra configuration file zebra.cfg. For user admin, you could use:

perm.anonymous: r
perm.admin: rw
passwd: passwordfile

And in the password file passwordfile, you have to specify users and encrypted passwords as colon
separated strings. Use a tool like htpasswd to maintain the encrypted passwords.

admin:secret

It is essential to configure Zebra to store records internally, and to support modifications and deletion of
records:

storeData: 1
storeKeys: 1

https://www.loc.gov/z3950/agency/
https://www.loc.gov/standards/sru/

The general record type should be set to any record filter which is able to parse XML records, you may use
any of the two declarations (but not both simultaneously!)

recordType: dom.filter_dom_conf.xml
recordType: grs.xml

Notice the difference to the specific instructions

recordType.xml: dom.filter_dom_conf.xml
recordType.xml: grs.xml

which only work when indexing XML files from the filesystem using the *.xml naming convention.

To enable transaction safe shadow indexing, which is extra important for this kind of operation, set

shadow: directoryname: size (e.g. 1000M)

See Section 6.2 for additional information on these configuration options.

Note
It is not possible to carry information about record types or similar to Zebra when using extended services,
due to limitations of the Z39.50 protocol. Therefore, indexing filters can not be chosen on a per-record
basis. One and only one general XML indexing filter must be defined.

6.10.1 Extended services in the Z39.50 protocol

The Z39.50 standard allows servers to accept special binary extended services protocol packages, which
may be used to insert, update and delete records into servers. These carry control and update information
to the servers, which are encoded in seven package fields:

The action parameter can be any of recordInsert (will fail if the record already exists), recordReplace
(will fail if the record does not exist), recordDelete (will fail if the record does not exist), and specialUpdate
(will insert or update the record as needed, record deletion is not possible).

During all actions, the usual rules for internal record ID generation apply, unless an optional recordIdNumber
Zebra internal ID or a recordIdOpaque string identifier is assigned. The default ID generation is con-
figured using the recordId: from zebra.cfg. See Section 6.2.

Setting of the recordIdNumber parameter, which must be an existing Zebra internal system ID number,
is not allowed during any recordInsert or specialUpdate action resulting in fresh record inserts.

When retrieving existing records indexed with GRS-1 indexing filters, the Zebra internal ID number is re-
turned in the field /*/id:idzebra/localnumber in the namespace xmlns:id="http://www.indexdata.dk/zebra/",
where it can be picked up for later record updates or deletes.

A new element set for retrieval of internal record data has been added, which can be used to access mini-
mal records containing only the recordIdNumber Zebra internal ID, or the recordIdOpaque string
identifier. This works for any indexing filter used. See Section 4.4.

The recordIdOpaque string parameter is an client-supplied, opaque record identifier, which may be
used under insert, update and delete operations. The client software is responsible for assigning these to

https://www.loc.gov/z3950/agency/
https://www.loc.gov/z3950/agency/

Zebra - User’s Guide and Reference 73 / 143

Parameter Value Notes

type ’update’
Must be set to trigger extended
services

action string

Extended service action type
with one of four possible
values: recordInsert,
recordReplace,
recordDelete, and
specialUpdate

record XML string
An XML formatted string
containing the record

syntax ’xml’

XML/SUTRS/MARC. GRS-1
not supported. The default filter
(record type) as given by
recordType in zebra.cfg is used
to parse the record.

recordIdOpaque string
Optional client-supplied,
opaque record identifier used
under insert operations.

recordIdNumber positive number

Zebra’s internal system number,
not allowed for
recordInsert or
specialUpdate actions
which result in fresh record
inserts.

databaseName database identifier
The name of the database to
which the extended services
should be applied.

Table 6.1: Extended services Z39.50 Package Fields

records. This identifier will replace zebra’s own automagic identifier generation with a unique mapping
from recordIdOpaque to the Zebra internal recordIdNumber. The opaque recordIdOpaque
string identifiers are not visible in retrieval records, nor are searchable, so the value of this parameter is
questionable. It serves mostly as a convenient mapping from application domain string identifiers to Zebra
internal ID’s.

6.10.2 Extended services from yaz-client

We can now start a yaz-client admin session and create a database:

$ yaz-client localhost:9999 -u admin/secret
Z> adm-create

Now the Default database was created, we can insert an XML file (esdd0006.grs from example/gils/records)
and index it:

Z> update insert id1234 esdd0006.grs

The 3rd parameter - id1234 here - is the recordIdOpaque package field.

Actually, we should have a way to specify "no opaque record id" for yaz-client’s update command.. We’ll
fix that.

The newly inserted record can be searched as usual:

Z> f utah
Sent searchRequest.
Received SearchResponse.
Search was a success.
Number of hits: 1, setno 1
SearchResult-1: term=utah cnt=1
records returned: 0
Elapsed: 0.014179

Let’s delete the beast, using the same recordIdOpaque string parameter:

Z> update delete id1234
No last record (update ignored)
Z> update delete 1 esdd0006.grs
Got extended services response
Status: done
Elapsed: 0.072441
Z> f utah
Sent searchRequest.

Zebra - User’s Guide and Reference 75 / 143

Received SearchResponse.
Search was a success.
Number of hits: 0, setno 2
SearchResult-1: term=utah cnt=0
records returned: 0
Elapsed: 0.013610

If shadow register is enabled in your zebra.cfg, you must run the adm-commit command

Z> adm-commit

after each update session in order write your changes from the shadow to the life register space.

6.10.3 Extended services from yaz-php

Extended services are also available from the YAZ PHP client layer. An example of an YAZ-PHP extended
service transaction is given here:

$record = ’<record><title>A fine specimen of a record</title></record ←↩
>’;

$options = array(’action’ => ’recordInsert’,
’syntax’ => ’xml’,
’record’ => $record,
’databaseName’ => ’mydatabase’
);

yaz_es($yaz, ’update’, $options);
yaz_es($yaz, ’commit’, array());
yaz_wait();

if ($error = yaz_error($yaz))
echo "$error";

6.10.4 Extended services debugging guide

When debugging ES over PHP we recommend the following order of tests:

• Make sure you have a nice record on your filesystem, which you can index from the filesystem by use of
the zebraidx command. Do it exactly as you planned, using one of the GRS-1 filters, or the DOMXML
filter. When this works, proceed.

• Check that your server setup is OK before you even coded one single line PHP using ES. Take the same
record form the file system, and send as ES via yaz-client like described in Section 6.10.2, and
remember the -a option which tells you what goes over the wire! Notice also the section on permissions:
try

perm.anonymous: rw

in zebra.cfg to make sure you do not run into permission problems (but never expose such an insecure
setup on the internet!!!). Then, make sure to set the general recordType instruction, pointing correctly
to the GRS-1 filters, or the DOMXML filters.

• If you insist on using the sysno in the recordIdNumber setting, please make sure you do only up-
dates and deletes. Zebra’s internal system number is not allowed for recordInsert or specialUpdate
actions which result in fresh record inserts.

• If shadow register is enabled in your zebra.cfg, you must remember running the

Z> adm-commit

command as well.

• If this works, then proceed to do the same thing in your PHP script.

Zebra - User’s Guide and Reference 77 / 143

Chapter 7

DOM XML Record Model and Filter Module

The record model described in this chapter applies to the fundamental, structured XML record type DOM,
introduced in Section 4.2.5.1. The DOM XML record model is experimental, and its inner workings might
change in future releases of the Zebra Information Server.

7.1 DOM Record Filter Architecture

The DOM XML filter uses a standard DOM XML structure as internal data model, and can therefore parse,
index, and display any XML document type. It is well suited to work on standardized XML-based formats
such as Dublin Core, MODS, METS, MARCXML, OAI-PMH, RSS, and performs equally well on any
other non-standard XML format.

A parser for binary MARC records based on the ISO2709 library standard is provided, it transforms these
to the internal MARCXML DOM representation. Other binary document parsers are planned to follow.

The DOM filter architecture consists of four different pipelines, each being a chain of arbitrarily many
successive XSLT transformations of the internal DOM XML representations of documents.

XML Stream

XML Doc

MARC
Records

DOM XML Filter Architecture

Indexing
XML DOM

<input>
pipeline

<extract>
pipeline

Zebra Inde

Figure 7.1: DOM XML filter architecture

The DOM XML filter pipelines use XSLT (and if supported on your platform, even EXSLT), it brings thus
full XPATH support to the indexing, storage and display rules of not only XML documents, but also binary
MARC records.

7.2 DOM XML filter pipeline configuration

The experimental, loadable DOM XML/XSLT filter module mod-dom.so is invoked by the zebra.cfg
configuration statement

recordtype.xml: dom.db/filter_dom_conf.xml

In this example the DOM XML filter is configured to work on all data files with suffix *.xml, where the
configuration file is found in the path db/filter_dom_conf.xml.

The DOM XSLT filter configuration file must be valid XML. It might look like this:

Zebra - User’s Guide and Reference 79 / 143

Name When Description Input Output

input first

input parsing and
initial
transformations to
common XML
format

Input raw XML
record buffers,
XML streams and
binary MARC
buffers

Common XML
DOM

extract second
indexing term
extraction
transformations

Common XML
DOM

Indexing XML
DOM

store second
transformations
before internal
document storage

Common XML
DOM

Storage XML
DOM

retrieve third

multiple
document retrieve
transformations
from storage to
different output
formats are
possible

Storage XML
DOM

Output XML
syntax in
requested formats

Table 7.1: DOM XML filter pipelines overview

<?xml version="1.0" encoding="UTF8"?>
<dom xmlns="http://indexdata.com/zebra-2.0">
<input>
<xmlreader level="1"/>
<!-- <marc inputcharset="marc-8"/> -->

</input>
<extract>
<xslt stylesheet="common2index.xsl"/>
</extract>
<store>
<xslt stylesheet="common2store.xsl"/>
</store>
<retrieve name="dc">
<xslt stylesheet="store2dc.xsl"/>
</retrieve>
<retrieve name="mods">
<xslt stylesheet="store2mods.xsl"/>
</retrieve>
</dom>

The root XML element <dom> and all other DOM XML filter elements are residing in the namespace
xmlns="http://indexdata.com/zebra-2.0".

All pipeline definition elements - i.e. the <input>, <extract>, <store>, and <retrieve> elements
- are optional. Missing pipeline definitions are just interpreted do-nothing identity pipelines.

All pipeline definition elements may contain zero or more <xslt stylesheet="path/file.xsl"/>
XSLT transformation instructions, which are performed sequentially from top to bottom. The paths in the
stylesheet attributes are relative to zebras working directory, or absolute to the file system root.

7.2.1 Input pipeline

The <input> pipeline definition element may contain either one XML Reader definition <xmlreader
level="1"/>, used to split an XML collection input stream into individual XML DOM documents at the
prescribed element level, or one MARC binary parsing instruction <marc inputcharset="marc-8"/>,
which defines a conversion to MARCXML format DOM trees. The allowed values of the inputcharset
attribute depend on your local iconv set-up.

Both input parsers deliver individual DOM XML documents to the following chain of zero or more <xslt
stylesheet="path/file.xsl"/> XSLT transformations. At the end of this pipeline, the docu-
ments are in the common format, used to feed both the <extract> and <store> pipelines.

7.2.2 Extract pipeline

The <extract> pipeline takes documents from any common DOM XML format to the Zebra specific in-
dexing DOM XML format. It may consist of zero ore more <xslt stylesheet="path/file.xsl"/>
XSLT transformations, and the outcome is handled to the Zebra core to drive the process of building the
inverted indexes. See Section 7.2.5 for details.

7.2.3 Store pipeline

The <store> pipeline takes documents from any common DOM XML format to the Zebra specific storage
DOM XML format. It may consist of zero ore more <xslt stylesheet="path/file.xsl"/>
XSLT transformations, and the outcome is handled to the Zebra core for deposition into the internal storage
system.

7.2.4 Retrieve pipeline

Finally, there may be one or more <retrieve> pipeline definitions, each of them again consisting of
zero or more <xslt stylesheet="path/file.xsl"/> XSLT transformations. These are used
for document presentation after search, and take the internal storage DOM XML to the requested output
formats during record present requests.

The possible multiple <retrieve> pipeline definitions are distinguished by their unique name attributes,
these are the literal schema or element set names used in SRW, SRU and Z39.50 protocol queries.

http://www.loc.gov/standards/sru/srw/
https://www.loc.gov/standards/sru/

Zebra - User’s Guide and Reference 81 / 143

7.2.5 Canonical Indexing Format

DOM XML indexing comes in two flavors: pure processing-instruction governed plain XML documents,
and - very similar to the Alvis filter indexing format - XML documents containing XML <record> and
<index> instructions from the magic namespace xmlns:z="http://indexdata.com/zebra-2.0".

7.2.5.1 Processing-instruction governed indexing format

The output of the processing instruction driven indexing XSLT stylesheets must contain processing instruc-
tions named zebra-2.0. The output of the XSLT indexing transformation is then parsed using DOM
methods, and the contained instructions are performed on the elements and their subtrees directly following
the processing instructions.

For example, the output of the command

xsltproc dom-index-pi.xsl marc-one.xml

might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<?zebra-2.0 record id=11224466 rank=42?>
<record>
<?zebra-2.0 index control:0?>
<control>11224466</control>
<?zebra-2.0 index any:w title:w title:p title:s?>
<title>How to program a computer</title>

</record>

7.2.5.2 Magic element governed indexing format

The output of the indexing XSLT stylesheets must contain certain elements in the magic xmlns:z="http://indexdata.com/zebra-2.0"
namespace. The output of the XSLT indexing transformation is then parsed using DOM methods, and the
contained instructions are performed on the magic elements and their subtrees.

For example, the output of the command

xsltproc dom-index-element.xsl marc-one.xml

might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<z:record xmlns:z="http://indexdata.com/zebra-2.0"
z:id="11224466" z:rank="42">
<z:index name="control:0">11224466</z:index>
<z:index name="any:w title:w title:p title:s">
How to program a computer</z:index>

</z:record>

7.2.5.3 Semantics of the indexing formats

Both indexing formats are defined with equal semantics and behavior in mind:

• Zebra specific instructions are either processing instructions named zebra-2.0 or elements contained
in the namespace xmlns:z="http://indexdata.com/zebra-2.0".

• There must be exactly one record instruction, which sets the scope for the following, possibly nested
index and group instructions.

• The unique record instruction may have additional attributes id, rank and type. Attribute id is the
value of the opaque ID and may be any string not containing the whitespace character ’ ’. The rank
attribute value must be a non-negative integer. See Section 6.9 . The type attribute specifies how the
record is to be treated. The following values may be given for type:

insert The record is inserted. If the record already exists, it is skipped (i.e. not replaced).

replace The record is replaced. If the record does not already exist, it is skipped (i.e. not inserted).

delete The record is deleted. If the record does not already exist, a warning issued and rest of records
are skipped in from the input stream.

update The record is inserted or replaced depending on whether the record exists or not. This is the
default behavior but may be effectively changed by "outside" the scope of the DOM filter by zebraidx
commands or extended services updates.

adelete The record is deleted. If the record does not already exist, it is skipped (i.e. nothing is deleted).

Note
Requires version 2.0.54 or later.

Note that the value of type is only used to determine the action if and only if the Zebra indexer is running
in "update" mode (i.e zebraidx update) or if the specialUpdate action of the Extended Service Update is
used. For this reason a specialUpdate may end up deleting records!

• Multiple and possible nested index instructions must contain at least one indexname:indextype
pair, and may contain multiple such pairs separated by the whitespace character ’ ’. In each index pair,
the name and the type of the index is separated by a colon character ’:’.

• Any index name consisting of ASCII letters, and following the standard Zebra rules will do, see Sec-
tion 5.3.5.1.

• Index types are restricted to the values defined in the standard configuration file default.idx, see
Section 5.2.3 and Chapter 10 for details.

• DOM input documents which are not resulting in both one unique valid record instruction and one or
more valid index instructions can not be searched and found. Therefore, invalid document processing is
aborted, and any content of the <extract> and <store> pipelines is discarded. A warning is issued
in the logs.

Zebra - User’s Guide and Reference 83 / 143

• The group can be used to group indexing material for proximity search. It can be used to search for
material that should all occur within the same group. It takes an optional unit attribute which can be
one of known Z39.50 proximity units: sentence (3), paragraph (4), section (5), chapter (6),
document (7), element (8), subelement (9), elementType (10). If omitted, unit element is
used.

For example, in order to search withing same group of unit type chapter, the corresponding Z39.50
proximity search would be: @prox 0 0 0 0 k 6 leftop rightop

Note
The group facility requires Zebra 2.1.0 or later

The examples work as follows: From the original XML file marc-one.xml (or from the XML record
DOM of the same form coming from an <input> pipeline), the indexing pipeline <extract> pro-
duces an indexing XML record, which is defined by the record instruction Zebra uses the content of
z:id="11224466" or id=11224466 as internal record ID, and - in case static ranking is set - the
content of rank=42 or z:rank="42" as static rank.

In these examples, the following literal indexes are constructed:

any:w
control:0
title:w
title:p
title:s

where the indexing type is defined after the literal ’:’ character. Any value from the standard config-
uration file default.idx will do. Finally, any text() node content recursively contained inside the
<z:index> element, or any element following a index processing instruction, will be filtered through
the appropriate char map for character normalization, and will be inserted in the named indexes.

Finally, this example configuration can be queried using PQF queries, either transported by Z39.50, (here
using a yaz-client)

Z> open localhost:9999
Z> elem dc
Z> form xml
Z>
Z> find @attr 1=control @attr 4=3 11224466
Z> scan @attr 1=control @attr 4=3 ""
Z>
Z> find @attr 1=title program
Z> scan @attr 1=title ""
Z>
Z> find @attr 1=title @attr 4=2 "How to program a computer"
Z> scan @attr 1=title @attr 4=2 ""

or the proprietary extensions x-pquery and x-pScanClause to SRU, and SRW

http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery ←↩
=@attr 1=title program

http://localhost:9999/?version=1.1&operation=scan&x-pScanClause= ←↩
@attr 1=title ""

See the section called “The SRU Server” for more information on SRU/SRW configuration, and the section
called “YAZ server virtual hosts” or the YAZ CQL section for the details or the YAZ frontend server.

Notice that there are no *.abs, *.est, *.map, or other GRS-1 filter configuration files involves in this
process, and that the literal index names are used during search and retrieval.

In case that we want to support the usual bib-1 Z39.50 numeric access points, it is a good idea to choose
string index names defined in the default configuration file tab/bib1.att, see Section 9.3.4

7.3 DOM Record Model Configuration

7.3.1 DOM Indexing Configuration

As mentioned above, there can be only one indexing pipeline, and configuration of the indexing process
is a synonym of writing an XSLT stylesheet which produces XML output containing the magic process-
ing instructions or elements discussed in Section 7.2.5. Obviously, there are million of different ways to
accomplish this task, and some comments and code snippets are in order to enlighten the wary.

Stylesheets can be written in the pull or the push style: pull means that the output XML structure is taken as
starting point of the internal structure of the XSLT stylesheet, and portions of the input XML are pulled out
and inserted into the right spots of the output XML structure. On the other side, push XSLT stylesheets are
recursively calling their template definitions, a process which is commanded by the input XML structure,
and is triggered to produce some output XML whenever some special conditions in the input stylesheets
are met. The pull type is well-suited for input XML with strong and well-defined structure and semantics,
like the following OAI indexing example, whereas the push type might be the only possible way to sort out
deeply recursive input XML formats.

A pull stylesheet example used to index OAI harvested records could use some of the following template
definitions:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:z="http://indexdata.com/zebra-2.0"
xmlns:oai="http://www.openarchives.org/&acro.oai;/2.0/"
xmlns:oai_dc="http://www.openarchives.org/&acro.oai;/2.0/oai_dc/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
version="1.0">

<!-- Example pull and magic element style Zebra indexing -->
<xsl:output indent="yes" method="xml" version="1.0" encoding="UTF ←↩

-8"/>

http://www.indexdata.com/yaz/doc/tools.html#cql

Zebra - User’s Guide and Reference 85 / 143

<!-- disable all default text node output -->
<xsl:template match="text()"/>

<!-- disable all default recursive element node transversal -->
<xsl:template match="node()"/>

<!-- match only on oai xml record root -->
<xsl:template match="/">
<z:record z:id="{normalize-space(oai:record/oai:header/oai:identifier ←↩

)}">
<!-- you may use z:rank="{some XSLT; function here}" -->

<!-- explicetly calling defined templates -->
<xsl:apply-templates/>
</z:record>
</xsl:template>

<!-- OAI indexing templates -->
<xsl:template match="oai:record/oai:header/oai:identifier">
<z:index name="oai_identifier:0">
<xsl:value-of select="."/>
</z:index>
</xsl:template>

<!-- etc, etc -->

<!-- DC specific indexing templates -->
<xsl:template match="oai:record/oai:metadata/oai_dc:dc/dc:title">
<z:index name="dc_any:w dc_title:w dc_title:p dc_title:s ">
<xsl:value-of select="."/>
</z:index>
</xsl:template>

<!-- etc, etc -->

</xsl:stylesheet>

7.3.2 DOM Indexing MARCXML

The DOM filter allows indexing of both binary MARC records and MARCXML records, depending on its
configuration. A typical MARCXML record might look like this:

<record xmlns="http://www.loc.gov/MARC21/slim">
<rank>42</rank>
<leader>00366nam 22001698a 4500</leader>
<controlfield tag="001"> 11224466 </controlfield>
<controlfield tag="003">DLC </controlfield>

<controlfield tag="005">00000000000000.0 </controlfield>
<controlfield tag="008">910710c19910701nju 00010 eng </ ←↩

controlfield>
<datafield tag="010" ind1=" " ind2=" ">
<subfield code="a"> 11224466 </subfield>

</datafield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">DLC</subfield>
<subfield code="c">DLC</subfield>

</datafield>
<datafield tag="050" ind1="0" ind2="0">
<subfield code="a">123-xyz</subfield>

</datafield>
<datafield tag="100" ind1="1" ind2="0">
<subfield code="a">Jack Collins</subfield>

</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">How to program a computer</subfield>

</datafield>
<datafield tag="260" ind1="1" ind2=" ">
<subfield code="a">Penguin</subfield>

</datafield>
<datafield tag="263" ind1=" " ind2=" ">
<subfield code="a">8710</subfield>

</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">p. cm.</subfield>

</datafield>
</record>

It is easily possible to make string manipulation in the DOM filter. For example, if you want to drop some
leading articles in the indexing of sort fields, you might want to pick out the MARCXML indicator attributes
to chop of leading substrings. If the above XML example would have an indicator ind2="8" in the title
field 245, i.e.

<datafield tag="245" ind1="1" ind2="8">
<subfield code="a">How to program a computer</subfield>

</datafield>

one could write a template taking into account this information to chop the first 8 characters from the sorting
index title:s like this:

<xsl:template match="m:datafield[@tag=’245’]">
<xsl:variable name="chop">
<xsl:choose>
<xsl:when test="not(number(@ind2))">0</xsl:when>
<xsl:otherwise><xsl:value-of select="number(@ind2)"/></xsl:otherwise>

Zebra - User’s Guide and Reference 87 / 143

</xsl:choose>
</xsl:variable>

<z:index name="title:w title:p any:w">
<xsl:value-of select="m:subfield[@code=’a’]"/>
</z:index>

<z:index name="title:s">
<xsl:value-of select="substring(m:subfield[@code=’a’], $chop)"/>
</z:index>

</xsl:template>

The output of the above MARCXML and XSLT excerpt would then be:

<z:index name="title:w title:p any:w">How to program a computer</z: ←↩
index>

<z:index name="title:s">program a computer</z:index>

and the record would be sorted in the title index under ’P’, not ’H’.

7.3.3 DOM Indexing Wizardry

The names and types of the indexes can be defined in the indexing XSLT stylesheet dynamically according
to content in the original XML records, which has opportunities for great power and wizardry as well as
grande disaster.

The following excerpt of a push stylesheet might be a good idea according to your strict control of the
XML input format (due to rigorous checking against well-defined and tight RelaxNG or XML Schema’s,
for example):

<xsl:template name="element-name-indexes">
<z:index name="{name()}:w">
<xsl:value-of select="’1’"/>
</z:index>
</xsl:template>

This template creates indexes which have the name of the working node of any input XML file, and assigns
a ’1’ to the index. The example query find @attr 1=xyz 1 finds all files which contain at least one
xyz XML element. In case you can not control which element names the input files contain, you might ask
for disaster and bad karma using this technique.

One variation over the theme dynamically created indexes will definitely be unwise:

<!-- match on oai xml record root -->

<xsl:template match="/">
<z:record>

<!-- create dynamic index name from input content -->
<xsl:variable name="dynamic_content">
<xsl:value-of select="oai:record/oai:header/oai:identifier"/>

</xsl:variable>

<!-- create zillions of indexes with unknown names -->
<z:index name="{$dynamic_content}:w">
<xsl:value-of select="oai:record/oai:metadata/oai_dc:dc"/>

</z:index>
</z:record>

</xsl:template>

Don’t be tempted to play too smart tricks with the power of XSLT, the above example will create zillions
of indexes with unpredictable names, resulting in severe Zebra index pollution..

7.3.4 Debuggig DOM Filter Configurations

It can be very hard to debug a DOM filter setup due to the many successive MARC syntax translations,
XML stream splitting and XSLT transformations involved. As an aid, you have always the power of the -s
command line switch to the zebraidz indexing command at your hand:

zebraidx -s -c zebra.cfg update some_record_stream.xml

This command line simulates indexing and dumps a lot of debug information in the logs, telling exactly
which transformations have been applied, how the documents look like after each transformation, and
which record ids and terms are send to the indexer.

Zebra - User’s Guide and Reference 89 / 143

Chapter 8

ALVIS XML Record Model and Filter Module

Warning
The functionality of this record model has been improved and replaced by the DOM XML record
model, see Chapter 7. The Alvis XML record model is considered obsolete, and will eventually be
removed from future releases of the Zebra software.

The record model described in this chapter applies to the fundamental, structured XML record type alvis,
introduced in Section 4.2.5.2.

This filter has been developed under the ALVIS project funded by the European Community under the
"Information Society Technologies" Program (2002-2006).

8.1 ALVIS Record Filter

The experimental, loadable Alvis XML/XSLT filter module mod-alvis.so is packaged in the GNU/De-
bian package libidzebra1.4-mod-alvis. It is invoked by the zebra.cfg configuration statement

recordtype.xml: alvis.db/filter_alvis_conf.xml

In this example on all data files with suffix *.xml, where the Alvis XSLT filter configuration file is found
in the path db/filter_alvis_conf.xml.

The Alvis XSLT filter configuration file must be valid XML. It might look like this (This example is used
for indexing and display of OAI harvested records):

<?xml version="1.0" encoding="UTF-8"?>
<schemaInfo>
<schema name="identity" stylesheet="xsl/identity.xsl" />
<schema name="index" identifier="http://indexdata.dk/zebra/xslt/1"
stylesheet="xsl/oai2index.xsl" />
<schema name="dc" stylesheet="xsl/oai2dc.xsl" />
<!-- use split level 2 when indexing whole OAI Record lists -->
<split level="2"/>
</schemaInfo>

http://www.alvis.info/

All named stylesheets defined inside schema element tags are for presentation after search, including the
indexing stylesheet (which is a great debugging help). The names defined in the name attributes must be
unique, these are the literal schema or element set names used in SRW, SRU and Z39.50 protocol
queries. The paths in the stylesheet attributes are relative to zebras working directory, or absolute to
file system root.

The <split level="2"/> decides where the XML Reader shall split the collections of records into
individual records, which then are loaded into DOM, and have the indexing XSLT stylesheet applied.

There must be exactly one indexing XSLT stylesheet, which is defined by the magic attribute identifier="http://indexdata.dk/zebra/xslt/1".

8.1.1 ALVIS Internal Record Representation

When indexing, an XML Reader is invoked to split the input files into suitable record XML pieces. Each
record piece is then transformed to an XML DOM structure, which is essentially the record model. Only
XSLT transformations can be applied during index, search and retrieval. Consequently, output formats are
restricted to whatever XSLT can deliver from the record XML structure, be it other XML formats, HTML,
or plain text. In case you have libxslt1 running with EXSLT support, you can use this functionality
inside the Alvis filter configuration XSLT stylesheets.

8.1.2 ALVIS Canonical Indexing Format

The output of the indexing XSLT stylesheets must contain certain elements in the magic xmlns:z="http://indexdata.dk/zebra/xslt/1"
namespace. The output of the XSLT indexing transformation is then parsed using DOM methods, and the
contained instructions are performed on the magic elements and their subtrees.

For example, the output of the command

xsltproc xsl/oai2index.xsl one-record.xml

might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<z:record xmlns:z="http://indexdata.dk/zebra/xslt/1"
z:id="oai:JTRS:CP-3290---Volume-I"
z:rank="47896">
<z:index name="oai_identifier" type="0">
oai:JTRS:CP-3290---Volume-I</z:index>
<z:index name="oai_datestamp" type="0">2004-07-09</z:index>
<z:index name="oai_setspec" type="0">jtrs</z:index>
<z:index name="dc_all" type="w">
<z:index name="dc_title" type="w">Proceedings of the 4th
International Conference and Exhibition:
World Congress on Superconductivity - Volume I</z:index>
<z:index name="dc_creator" type="w">Kumar Krishen and *Calvin
Burnham, Editors</z:index>
</z:index>
</z:record>

http://www.loc.gov/standards/sru/srw/
https://www.loc.gov/standards/sru/

Zebra - User’s Guide and Reference 91 / 143

This means the following: From the original XML file one-record.xml (or from the XML record DOM
of the same form coming from a split input file), the indexing stylesheet produces an indexing XML record,
which is defined by the record element in the magic namespace xmlns:z="http://indexdata.dk/zebra/xslt/1".
Zebra uses the content of z:id="oai:JTRS:CP-3290---Volume-I" as internal record ID, and - in
case static ranking is set - the content of z:rank="47896" as static rank. Following the discussion in
Section 6.9 we see that this records is internally ordered lexicographically according to the value of the
string oai:JTRS:CP-3290---Volume-I47896.

In this example, the following literal indexes are constructed:

oai_identifier
oai_datestamp
oai_setspec
dc_all
dc_title
dc_creator

where the indexing type is defined in the type attribute (any value from the standard configuration file
default.idx will do). Finally, any text() node content recursively contained inside the index will
be filtered through the appropriate char map for character normalization, and will be inserted in the index.

Specific to this example, we see that the single word oai:JTRS:CP-3290---Volume-Iwill be literal,
byte for byte without any form of character normalization, inserted into the index named oai:identifier,
the text Kumar Krishen and *Calvin Burnham, Editors will be inserted using the w charac-
ter normalization defined in default.idx into the index dc:creator (that is, after character nor-
malization the index will keep the individual words kumar, krishen, and, calvin, burnham, and
editors), and finally both the texts Proceedings of the 4th International Conference
and Exhibition: World Congress on Superconductivity - Volume I and Kumar
Krishen and *Calvin Burnham, Editors will be inserted into the index dc:all using the
same character normalization map w.

Finally, this example configuration can be queried using PQF queries, either transported by Z39.50, (here
using a yaz-client)

Z> open localhost:9999
Z> elem dc
Z> form xml
Z>
Z> f @attr 1=dc_creator Kumar
Z> scan @attr 1=dc_creator adam
Z>
Z> f @attr 1=dc_title @attr 4=2 "proceeding congress ←↩

superconductivity"
Z> scan @attr 1=dc_title abc

or the proprietary extensions x-pquery and x-pScanClause to SRU, and SRW

http://localhost:9999/?version=1.1&operation=searchRetrieve&x-pquery ←↩
=%40attr+1%3Ddc_creator+%40attr+4%3D6+%22the

http://localhost:9999/?version=1.1&operation=scan&x-pScanClause=@attr ←↩
+1=dc_date+@attr+4=2+a

See the section called “The SRU Server” for more information on SRU/SRW configuration, and the section
called “YAZ server virtual hosts” or the YAZ CQL section for the details or the YAZ frontend server.

Notice that there are no *.abs, *.est, *.map, or other GRS-1 filter configuration files involves in this
process, and that the literal index names are used during search and retrieval.

8.2 ALVIS Record Model Configuration

8.2.1 ALVIS Indexing Configuration

As mentioned above, there can be only one indexing stylesheet, and configuration of the indexing process
is a synonym of writing an XSLT stylesheet which produces XML output containing the magic elements
discussed in Section 8.1.1. Obviously, there are million of different ways to accomplish this task, and some
comments and code snippets are in order to lead our Padawan’s on the right track to the good side of the
force.

Stylesheets can be written in the pull or the push style: pull means that the output XML structure is taken as
starting point of the internal structure of the XSLT stylesheet, and portions of the input XML are pulled out
and inserted into the right spots of the output XML structure. On the other side, push XSLT stylesheets are
recursively calling their template definitions, a process which is commanded by the input XML structure,
and are triggered to produce some output XML whenever some special conditions in the input stylesheets
are met. The pull type is well-suited for input XML with strong and well-defined structure and semantics,
like the following OAI indexing example, whereas the push type might be the only possible way to sort out
deeply recursive input XML formats.

A pull stylesheet example used to index OAI harvested records could use some of the following template
definitions:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:z="http://indexdata.dk/zebra/xslt/1"
xmlns:oai="http://www.openarchives.org/&acro.oai;/2.0/"
xmlns:oai_dc="http://www.openarchives.org/&acro.oai;/2.0/oai_dc/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
version="1.0">

<xsl:output indent="yes" method="xml" version="1.0" encoding="UTF ←↩
-8"/>

<!-- disable all default text node output -->
<xsl:template match="text()"/>

<!-- match on oai xml record root -->
<xsl:template match="/">

http://www.indexdata.com/yaz/doc/tools.html#cql

Zebra - User’s Guide and Reference 93 / 143

<z:record z:id="{normalize-space(oai:record/oai:header/oai:identifier ←↩
)}">

<!-- you might want to use z:rank="{some &acro.xslt; function here}" ←↩
-->

<xsl:apply-templates/>
</z:record>
</xsl:template>

<!-- &acro.oai; indexing templates -->
<xsl:template match="oai:record/oai:header/oai:identifier">
<z:index name="oai_identifier" type="0">
<xsl:value-of select="."/>
</z:index>
</xsl:template>

<!-- etc, etc -->

<!-- DC specific indexing templates -->
<xsl:template match="oai:record/oai:metadata/oai_dc:dc/dc:title">
<z:index name="dc_title" type="w">
<xsl:value-of select="."/>
</z:index>
</xsl:template>

<!-- etc, etc -->

</xsl:stylesheet>

Notice also, that the names and types of the indexes can be defined in the indexing XSLT stylesheet dy-
namically according to content in the original XML records, which has opportunities for great power and
wizardry as well as grande disaster.

The following excerpt of a push stylesheet might be a good idea according to your strict control of the
XML input format (due to rigorous checking against well-defined and tight RelaxNG or XML Schema’s,
for example):

<xsl:template name="element-name-indexes">
<z:index name="{name()}" type="w">
<xsl:value-of select="’1’"/>
</z:index>
</xsl:template>

This template creates indexes which have the name of the working node of any input XML file, and assigns
a ’1’ to the index. The example query find @attr 1=xyz 1 finds all files which contain at least one
xyz XML element. In case you can not control which element names the input files contain, you might ask
for disaster and bad karma using this technique.

One variation over the theme dynamically created indexes will definitely be unwise:

<!-- match on oai xml record root -->
<xsl:template match="/">
<z:record>

<!-- create dynamic index name from input content -->
<xsl:variable name="dynamic_content">
<xsl:value-of select="oai:record/oai:header/oai:identifier"/>

</xsl:variable>

<!-- create zillions of indexes with unknown names -->
<z:index name="{$dynamic_content}" type="w">
<xsl:value-of select="oai:record/oai:metadata/oai_dc:dc"/>

</z:index>
</z:record>

</xsl:template>

Don’t be tempted to cross the line to the dark side of the force, Padawan; this leads to suffering and pain,
and universal disintegration of your project schedule.

8.2.2 ALVIS Exchange Formats

An exchange format can be anything which can be the outcome of an XSLT transformation, as far as
the stylesheet is registered in the main Alvis XSLT filter configuration file, see Section 8.1. In principle
anything that can be expressed in XML, HTML, and TEXT can be the output of a schema or element
set directive during search, as long as the information comes from the original input record XML DOM
tree (and not the transformed and indexed XML!!).

In addition, internal administrative information from the Zebra indexer can be accessed during record re-
trieval. The following example is a summary of the possibilities:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:z="http://indexdata.dk/zebra/xslt/1"
version="1.0">

<!-- register internal zebra parameters -->
<xsl:param name="id" select="’’"/>
<xsl:param name="filename" select="’’"/>
<xsl:param name="score" select="’’"/>
<xsl:param name="schema" select="’’"/>

<xsl:output indent="yes" method="xml" version="1.0" encoding="UTF ←↩
-8"/>

<!-- use then for display of internal information -->
<xsl:template match="/">

Zebra - User’s Guide and Reference 95 / 143

<z:zebra>
<id><xsl:value-of select="$id"/></id>
<filename><xsl:value-of select="$filename"/></filename>
<score><xsl:value-of select="$score"/></score>
<schema><xsl:value-of select="$schema"/></schema>
</z:zebra>
</xsl:template>

</xsl:stylesheet>

8.2.3 ALVIS Filter OAI Indexing Example

The source code tarball contains a working Alvis filter example in the directory examples/alvis-oai/,
which should get you started.

More example data can be harvested from any OAI compliant server, see details at the OAI http://www.openarchives.org/-
web site, and the community links at http://www.openarchives.org/community/index.html. There is a tuto-
rial found at http://www.oaforum.org/tutorial/.

http://www.openarchives.org/
http://www.openarchives.org/
http://www.openarchives.org/community/index.html
http://www.oaforum.org/tutorial/

Zebra - User’s Guide and Reference 97 / 143

Chapter 9

GRS-1 Record Model and Filter Modules

Note
The functionality of this record model has been improved and replaced by the DOM XML record model.
See Chapter 7.

The record model described in this chapter applies to the fundamental, structured record type grs, intro-
duced in Section 4.2.5.3.

9.1 GRS-1 Record Filters

Many basic subtypes of the grs type are currently available:

grs.sgml This is the canonical input format described Section 9.1.1. It is using simple SGML-like
syntax.

grs.marc.type This allows Zebra to read records in the ISO2709 (MARC) encoding standard. Last
parameter type names the .abs file (see below) which describes the specific MARC structure of
the input record as well as the indexing rules.

The grs.marc uses an internal representation which is not XML conformant. In particular MARC
tags are presented as elements with the same name. And XML elements may not start with digits.
Therefore this filter is only suitable for systems returning GRS-1 and MARC records. For XML use
grs.marcxml filter instead (see below).

The loadable grs.marc filter module is packaged in the GNU/Debian package libidzebra2.0-mod-grs-marc

grs.marcxml.type This allows Zebra to read ISO2709 encoded records. Last parameter type names
the .abs file (see below) which describes the specific MARC structure of the input record as well as
the indexing rules.

The internal representation for grs.marcxml is the same as for MARCXML. It slightly more
complicated to work with than grs.marc but XML conformant.

The loadable grs.marcxml filter module is also contained in the GNU/Debian package libidzebra2.0-mod-grs-marc

https://www.loc.gov/standards/marcxml/

grs.xml This filter reads XML records and uses Expat to parse them and convert them into IDZebra’s
internal grs record model. Only one record per file is supported, due to the fact XML does not allow
two documents to "follow" each other (there is no way to know when a document is finished). This
filter is only available if Zebra is compiled with EXPAT support.

The loadable grs.xml filter module is packaged in the GNU/Debian package libidzebra2.0-mod-grs-xml

grs.regx.filter This enables a user-supplied Regular Expressions input filter described in Section 9.1.2.

The loadable grs.regx filter module is packaged in the GNU/Debian package libidzebra2.0-mod-grs-regx

grs.tcl.filter Similar to grs.regx but using Tcl for rules, described in Section 9.1.2.

The loadable grs.tcl filter module is also packaged in the GNU/Debian package libidzebra2.0-mod-grs-regx

9.1.1 GRS-1 Canonical Input Format

Although input data can take any form, it is sometimes useful to describe the record processing capabilities
of the system in terms of a single, canonical input format that gives access to the full spectrum of structure
and flexibility in the system. In Zebra, this canonical format is an "SGML-like" syntax.

To use the canonical format specify grs.sgml as the record type.

Consider a record describing an information resource (such a record is sometimes known as a locator
record). It might contain a field describing the distributor of the information resource, which might in turn
be partitioned into various fields providing details about the distributor, like this:

<Distributor>
<Name> USGS/WRD </Name>
<Organization> USGS/WRD </Organization>
<Street-Address>
U.S. GEOLOGICAL SURVEY, 505 MARQUETTE, NW
</Street-Address>
<City> ALBUQUERQUE </City>
<State> NM </State>
<Zip-Code> 87102 </Zip-Code>
<Country> USA </Country>
<Telephone> (505) 766-5560 </Telephone>
</Distributor>

The keywords surrounded by <...> are tags, while the sections of text in between are the data elements.
A data element is characterized by its location in the tree that is made up by the nested elements. Each
element is terminated by a closing tag - beginning with </, and containing the same symbolic tag-name
as the corresponding opening tag. The general closing tag - </> - terminates the element started by the
last opening tag. The structuring of elements is significant. The element Telephone, for instance, may
be indexed and presented to the client differently, depending on whether it appears inside the Distributor
element, or some other, structured data element such a Supplier element.

9.1.1.1 Record Root

The first tag in a record describes the root node of the tree that makes up the total record. In the canonical
input format, the root tag should contain the name of the schema that lends context to the elements of

http://expat.sourceforge.net/

Zebra - User’s Guide and Reference 99 / 143

the record (see Section 9.2). The following is a GILS record that contains only a single element (strictly
speaking, that makes it an illegal GILS record, since the GILS profile includes several mandatory elements
- Zebra does not validate the contents of a record against the Z39.50 profile, however - it merely attempts
to match up elements of a local representation with the given schema):

<gils>
<title>Zen and the Art of Motorcycle Maintenance</title>
</gils>

9.1.1.2 Variants

Zebra allows you to provide individual data elements in a number of variant forms. Examples of variant
forms are textual data elements which might appear in different languages, and images which may appear
in different formats or layouts. The variant system in Zebra is essentially a representation of the variant
mechanism of Z39.50-1995.

The following is an example of a title element which occurs in two different languages.

<title>
<var lang lang "eng">
Zen and the Art of Motorcycle Maintenance</>
<var lang lang "dan">
Zen og Kunsten at Vedligeholde en Motorcykel</>
</title>

The syntax of the variant element is <var class type value>. The available values for the class
and type fields are given by the variant set that is associated with the current schema (see Section 9.1.1.2).

Variant elements are terminated by the general end-tag </>, by the variant end-tag </var>, by the appearance
of another variant tag with the same class and value settings, or by the appearance of another, normal tag.
In other words, the end-tags for the variants used in the example above could have been omitted.

Variant elements can be nested. The element

<title>
<var lang lang "eng"><var body iana "text/plain">
Zen and the Art of Motorcycle Maintenance
</title>

Associates two variant components to the variant list for the title element.

Given the nesting rules described above, we could write

<title>
<var body iana "text/plain>
<var lang lang "eng">
Zen and the Art of Motorcycle Maintenance
<var lang lang "dan">
Zen og Kunsten at Vedligeholde en Motorcykel
</title>

The title element above comes in two variants. Both have the IANA body type "text/plain", but one is in
English, and the other in Danish. The client, using the element selection mechanism of Z39.50, can retrieve
information about the available variant forms of data elements, or it can select specific variants based on
the requirements of the end-user.

9.1.2 GRS-1 REGX And TCL Input Filters

In order to handle general input formats, Zebra allows the operator to define filters which read individual
records in their native format and produce an internal representation that the system can work with.

Input filters are ASCII files, generally with the suffix .flt. The system looks for the files in the directories
given in the profilePath setting in the zebra.cfg files. The record type for the filter is grs.regx.filter-
filename (fundamental type grs, file read type regx, argument filter-filename).

Generally, an input filter consists of a sequence of rules, where each rule consists of a sequence of expres-
sions, followed by an action. The expressions are evaluated against the contents of the input record, and the
actions normally contribute to the generation of an internal representation of the record.

An expression can be either of the following:

INIT The action associated with this expression is evaluated exactly once in the lifetime of the application,
before any records are read. It can be used in conjunction with an action that initializes tables or other
resources that are used in the processing of input records.

BEGIN Matches the beginning of the record. It can be used to initialize variables, etc. Typically, the
BEGIN rule is also used to establish the root node of the record.

END Matches the end of the record - when all of the contents of the record has been processed.

/reg/ Matches regular expression pattern reg from the input record. The operators supported are the
same as for regular expression queries. Refer to Section 5.3.6.

BODY This keyword may only be used between two patterns. It matches everything between (not including)
those patterns.

FINISH The expression associated with this pattern is evaluated once, before the application terminates.
It can be used to release system resources - typically ones allocated in the INIT step.

An action is surrounded by curly braces ({...}), and consists of a sequence of statements. Statements
may be separated by newlines or semicolons (;). Within actions, the strings that matched the expressions
immediately preceding the action can be referred to as $0, $1, $2, etc.

The available statements are:

begin type [parameter ...] Begin a new data element. The type is one of the following:

record Begin a new record. The following parameter should be the name of the schema that describes
the structure of the record, e.g., gils or wais (see below). The begin record call should
precede any other use of the begin statement.

Zebra - User’s Guide and Reference 101 / 143

element Begin a new tagged element. The parameter is the name of the tag. If the tag is not matched
anywhere in the tagsets referenced by the current schema, it is treated as a local string tag.

variant Begin a new node in a variant tree. The parameters are class type value.

data parameter Create a data element. The concatenated arguments make up the value of the data el-
ement. The option -text signals that the layout (whitespace) of the data should be retained for
transmission. The option -element tag wraps the data up in the tag. The use of the -element
option is equivalent to preceding the command with a begin element command, and following it
with the end command.

end [type] Close a tagged element. If no parameter is given, the last element on the stack is terminated.
The first parameter, if any, is a type name, similar to the begin statement. For the element type, a
tag name can be provided to terminate a specific tag.

unread no Move the input pointer to the offset of first character that match rule given by no. The first rule
from left-to-right is numbered zero, the second rule is named 1 and so on.

The following input filter reads a Usenet news file, producing a record in the WAIS schema. Note that the
body of a news posting is separated from the list of headers by a blank line (or rather a sequence of two
newline characters.

BEGIN { begin record wais }

/^From:/ BODY /$/ { data -element name $1 }
/^Subject:/ BODY /$/ { data -element title $1 }
/^Date:/ BODY /$/ { data -element lastModified $1 }
/\n\n/ BODY END {
begin element bodyOfDisplay
begin variant body iana "text/plain"
data -text $1
end record
}

If Zebra is compiled with support for Tcl enabled, the statements described above are supplemented with a
complete scripting environment, including control structures (conditional expressions and loop constructs),
and powerful string manipulation mechanisms for modifying the elements of a record.

9.2 GRS-1 Internal Record Representation

When records are manipulated by the system, they’re represented in a tree-structure, with data elements at
the leaf nodes, and tags or variant components at the non-leaf nodes. The root-node identifies the schema
that lends context to the tagging and structuring of the record. Imagine a simple record, consisting of a
’title’ element and an ’author’ element:

ROOT
TITLE "Zen and the Art of Motorcycle Maintenance"
AUTHOR "Robert Pirsig"

A slightly more complex record would have the author element consist of two elements, a surname and a
first name:

ROOT
TITLE "Zen and the Art of Motorcycle Maintenance"
AUTHOR
FIRST-NAME "Robert"
SURNAME "Pirsig"

The root of the record will refer to the record schema that describes the structuring of this particular record.
The schema defines the element tags (TITLE, FIRST-NAME, etc.) that may occur in the record, as well
as the structuring (SURNAME should appear below AUTHOR, etc.). In addition, the schema establishes
element set names that are used by the client to request a subset of the elements of a given record. The
schema may also establish rules for converting the record to a different schema, by stating, for each element,
a mapping to a different tag path.

9.2.1 Tagged Elements

A data element is characterized by its tag, and its position in the structure of the record. For instance, while
the tag "telephone number" may be used different places in a record, we may need to distinguish between
these occurrences, both for searching and presentation purposes. For instance, while the phone numbers for
the "customer" and the "service provider" are both representatives for the same type of resource (a telephone
number), it is essential that they be kept separate. The record schema provides the structure of the record,
and names each data element (defined by the sequence of tags - the tag path - by which the element can be
reached from the root of the record).

9.2.2 Variants

The children of a tag node may be either more tag nodes, a data node (possibly accompanied by tag nodes),
or a tree of variant nodes. The children of variant nodes are either more variant nodes or a data node
(possibly accompanied by more variant nodes). Each leaf node, which is normally a data node, corresponds
to a variant form of the tagged element identified by the tag which parents the variant tree. The following
title element occurs in two different languages:

VARIANT LANG=ENG "War and Peace"
TITLE
VARIANT LANG=DAN "Krig og Fred"

Which of the two elements are transmitted to the client by the server depends on the specifications provided
by the client, if any.

In practice, each variant node is associated with a triple of class, type, value, corresponding to the variant
mechanism of Z39.50.

9.2.3 Data Elements

Data nodes have no children (they are always leaf nodes in the record tree).

Zebra - User’s Guide and Reference 103 / 143

9.3 GRS-1 Record Model Configuration

The following sections describe the configuration files that govern the internal management of grs records.
The system searches for the files in the directories specified by the profilePath setting in the zebra.cfg
file.

9.3.1 The Abstract Syntax

The abstract syntax definition (also known as an Abstract Record Structure, or ARS) is the focal point of
the record schema description. For a given schema, the ABS file may state any or all of the following:

• The object identifier of the Z39.50 schema associated with the ARS, so that it can be referred to by the
client.

• The attribute set (which can possibly be a compound of multiple sets) which applies in the profile. This
is used when indexing and searching the records belonging to the given profile.

• The tag set (again, this can consist of several different sets). This is used when reading the records from
a file, to recognize the different tags, and when transmitting the record to the client - mapping the tags to
their numerical representation, if they are known.

• The variant set which is used in the profile. This provides a vocabulary for specifying the forms of data
that appear inside the records.

• Element set names, which are a shorthand way for the client to ask for a subset of the data elements
contained in a record. Element set names, in the retrieval module, are mapped to element specifications,
which contain information equivalent to the Espec-1 syntax of Z39.50.

• Map tables, which may specify mappings to other database profiles, if desired.

• Possibly, a set of rules describing the mapping of elements to a MARC representation.

• A list of element descriptions (this is the actual ARS of the schema, in Z39.50 terms), which lists the
ways in which the various tags can be used and organized hierarchically.

Several of the entries above simply refer to other files, which describe the given objects.

9.3.2 The Configuration Files

This section describes the syntax and use of the various tables which are used by the retrieval module.

The number of different file types may appear daunting at first, but each type corresponds fairly clearly
to a single aspect of the Z39.50 retrieval facilities. Further, the average database administrator, who is
simply reusing an existing profile for which tables already exist, shouldn’t have to worry too much about
the contents of these tables.

Generally, the files are simple ASCII files, which can be maintained using any text editor. Blank lines,
and lines beginning with a (#) are ignored. Any characters on a line followed by a (#) are also ignored.

All other lines contain directives, which provide some setting or value to the system. Generally, settings
are characterized by a single keyword, identifying the setting, followed by a number of parameters. Some
settings are repeatable (r), while others may occur only once in a file. Some settings are optional (o), while
others again are mandatory (m).

9.3.3 The Abstract Syntax (.abs) Files

The name of this file type is slightly misleading in Z39.50 terms, since, apart from the actual abstract syntax
of the profile, it also includes most of the other definitions that go into a database profile.

When a record in the canonical, SGML-like format is read from a file or from the database, the first tag of
the file should reference the profile that governs the layout of the record. If the first tag of the record is,
say, <gils>, the system will look for the profile definition in the file gils.abs. Profile definitions are
cached, so they only have to be read once during the lifespan of the current process.

When writing your own input filters, the record-begin command introduces the profile, and should always
be called first thing when introducing a new record.

The file may contain the following directives:

name symbolic-name (m) This provides a shorthand name or description for the profile. Mostly useful
for diagnostic purposes.

reference OID-name (m) The reference name of the OID for the profile. The reference names can be found
in the util module of YAZ.

attset filename (m) The attribute set that is used for indexing and searching records belonging to this
profile.

tagset filename (o) The tag set (if any) that describe that fields of the records.

varset filename (o) The variant set used in the profile.

maptab filename (o,r) This points to a conversion table that might be used if the client asks for the record
in a different schema from the native one.

marc filename (o) Points to a file containing parameters for representing the record contents in the
ISO2709 syntax. Read the description of the MARC representation facility below.

esetname name filename (o,r) Associates the given element set name with an element selection file. If
an (@) is given in place of the filename, this corresponds to a null mapping for the given element set
name.

all tags (o) This directive specifies a list of attributes which should be appended to the attribute list given
for each element. The effect is to make every single element in the abstract syntax searchable by
way of the given attributes. This directive provides an efficient way of supporting free-text searching
across all elements. However, it does increase the size of the index significantly. The attributes can
be qualified with a structure, as in the elm directive below.

Zebra - User’s Guide and Reference 105 / 143

elm path name attributes (o,r) Adds an element to the abstract record syntax of the schema. The
path follows the syntax which is suggested by the Z39.50 document - that is, a sequence of tags sep-
arated by slashes (/). Each tag is given as a comma-separated pair of tag type and -value surrounded
by parenthesis. The name is the name of the element, and the attributes specifies which attributes
to use when indexing the element in a comma-separated list. A ! in place of the attribute name is
equivalent to specifying an attribute name identical to the element name. A - in place of the attribute
name specifies that no indexing is to take place for the given element. The attributes can be quali-
fied with field types to specify which character set should govern the indexing procedure for that
field. The same data element may be indexed into several different fields, using different character
set definitions. See the Chapter 10. The default field type is w for word.

xelm xpath attributes Specifies indexing for record nodes given by xpath. Unlike directive elm,
this directive allows you to index attribute contents. The xpath uses a syntax similar to XPath. The
attributes have same syntax and meaning as directive elm, except that operator ! refers to the
nodes selected by xpath.

melm field$subfield attributes This directive is specifically for MARC-formatted records, in-
gested either in the form of MARCXML documents, or in the ISO2709/Z39.2 format using the
grs.marcxml input filter. You can specify indexing rules for any subfield, or you can leave off the
$subfield part and specify default rules for all subfields of the given field (note: default rules
should come after any subfield-specific rules in the configuration file). The attributes have the
same syntax and meaning as for the ’elm’ directive above.

encoding encodingname This directive specifies character encoding for external records. For records
such as XML that specifies encoding within the file via a header this directive is ignored. If neither this
directive is given, nor an encoding is set within external records, ISO-8859-1 encoding is assumed.

xpath enable/disable If this directive is followed by enable, then extra indexing is performed to
allow for XPath-like queries. If this directive is not specified - equivalent to disable - no extra
XPath-indexing is performed.

systag systemTag actualTag Specifies what information, if any, Zebra should automatically include
in retrieval records for the ``system fields” that it supports. systemTag may be any of the following:

rank An integer indicating the relevance-ranking score assigned to the record.

sysno An automatically generated identifier for the record, unique within this database. It is repre-
sented by the <localControlNumber> element in XML and the (1,14) tag in GRS-1.

size The size, in bytes, of the retrieved record.

The actualTag parameter may be none to indicate that the named element should be omitted from
retrieval records.

Note
The mechanism for controlling indexing is not adequate for complex databases, and will probably be
moved into a separate configuration table eventually.

The following is an excerpt from the abstract syntax file for the GILS profile.

name gils
reference GILS-schema
attset gils.att
tagset gils.tag
varset var1.var

maptab gils-usmarc.map

Element set names

esetname VARIANT gils-variant.est # for WAIS-compliance
esetname B gils-b.est
esetname G gils-g.est
esetname F @

elm (1,10) rank -
elm (1,12) url -
elm (1,14) localControlNumber Local-number
elm (1,16) dateOfLastModification Date/time-last- ←↩

modified
elm (2,1) title w:!,p:!
elm (4,1) controlIdentifier Identifier-standard
elm (2,6) abstract Abstract
elm (4,51) purpose !
elm (4,52) originator -
elm (4,53) accessConstraints !
elm (4,54) useConstraints !
elm (4,70) availability -
elm (4,70)/(4,90) distributor -
elm (4,70)/(4,90)/(2,7) distributorName !
elm (4,70)/(4,90)/(2,10) distributorOrganization !
elm (4,70)/(4,90)/(4,2) distributorStreetAddress !
elm (4,70)/(4,90)/(4,3) distributorCity !

9.3.4 The Attribute Set (.att) Files

This file type describes the Use elements of an attribute set. It contains the following directives.

name symbolic-name (m) This provides a shorthand name or description for the attribute set. Mostly
useful for diagnostic purposes.

reference OID-name (m) The reference name of the OID for the attribute set. The reference names can be
found in the util module of YAZ.

include filename (o,r) This directive is used to include another attribute set as a part of the current one.
This is used when a new attribute set is defined as an extension to another set. For instance, many new
attribute sets are defined as extensions to the bib-1 set. This is an important feature of the retrieval

Zebra - User’s Guide and Reference 107 / 143

system of Z39.50, as it ensures the highest possible level of interoperability, as those access points of
your database which are derived from the external set (say, bib-1) can be used even by clients who
are unaware of the new set.

att att-value att-name [local-value] (o,r) This repeatable directive introduces a new attribute to
the set. The attribute value is stored in the index (unless a local-value is given, in which case this
is stored). The name is used to refer to the attribute from the abstract syntax.

This is an excerpt from the GILS attribute set definition. Notice how the file describing the bib-1 attribute
set is referenced.

name gils
reference GILS-attset
include bib1.att

att 2001 distributorName
att 2002 indextermsControlled
att 2003 purpose
att 2004 accessConstraints
att 2005 useConstraints

9.3.5 The Tag Set (.tag) Files

This file type defines the tagset of the profile, possibly by referencing other tag sets (most tag sets, for
instance, will include tagsetG and tagsetM from the Z39.50 specification. The file may contain the following
directives.

name symbolic-name (m) This provides a shorthand name or description for the tag set. Mostly useful for
diagnostic purposes.

reference OID-name (o) The reference name of the OID for the tag set. The reference names can be found
in the util module of YAZ. The directive is optional, since not all tag sets are registered outside of their
schema.

type integer (m) The type number of the tagset within the schema profile (note: this specification really
should belong to the .abs file. This will be fixed in a future release).

include filename (o,r) This directive is used to include the definitions of other tag sets into the current one.

tag number names type (o,r) Introduces a new tag to the set. The number is the tag number as used in the
protocol (there is currently no mechanism for specifying string tags at this point, but this would be
quick work to add). The names parameter is a list of names by which the tag should be recognized
in the input file format. The names should be separated by slashes (/). The type is the recommended
data type of the tag. It should be one of the following:

• structured

• string

• numeric

• bool

• oid

• generalizedtime

• intunit

• int

• octetstring

• null

The following is an excerpt from the TagsetG definition file.

name tagsetg
reference TagsetG
type 2

tag 1 title string
tag 2 author string
tag 3 publicationPlace string
tag 4 publicationDate string
tag 5 documentId string
tag 6 abstract string
tag 7 name string
tag 8 date generalizedtime
tag 9 bodyOfDisplay string
tag 10 organization string

9.3.6 The Variant Set (.var) Files

The variant set file is a straightforward representation of the variant set definitions associated with the
protocol. At present, only the Variant-1 set is known.

These are the directives allowed in the file.

name symbolic-name (m) This provides a shorthand name or description for the variant set. Mostly useful
for diagnostic purposes.

reference OID-name (o) The reference name of the OID for the variant set, if one is required. The refer-
ence names can be found in the util module of YAZ.

class integer class-name (m,r) Introduces a new class to the variant set.

type integer type-name datatype (m,r) Addes a new type to the current class (the one introduced by the
most recent class directive). The type names belong to the same name space as the one used in the
tag set definition file.

The following is an excerpt from the file describing the variant set Variant-1.

Zebra - User’s Guide and Reference 109 / 143

name variant-1
reference Variant-1

class 1 variantId

type 1 variantId octetstring

class 2 body

type 1 iana string
type 2 z39.50 string
type 3 other string

9.3.7 The Element Set (.est) Files

The element set specification files describe a selection of a subset of the elements of a database record.
The element selection mechanism is equivalent to the one supplied by the Espec-1 syntax of the Z39.50
specification. In fact, the internal representation of an element set specification is identical to the Espec-1
structure, and we’ll refer you to the description of that structure for most of the detailed semantics of the
directives below.

Note
Not all of the Espec-1 functionality has been implemented yet. The fields that are mentioned below all
work as expected, unless otherwise is noted.

The directives available in the element set file are as follows:

defaultVariantSetId OID-name (o) If variants are used in the following, this should provide the name
of the variantset used (it’s not currently possible to specify a different set in the individual variant
request). In almost all cases (certainly all profiles known to us), the name Variant-1 should be
given here.

defaultVariantRequest variant-request (o) This directive provides a default variant request for use when
the individual element requests (see below) do not contain a variant request. Variant requests consist
of a blank-separated list of variant components. A variant component is a comma-separated, paren-
thesized triple of variant class, type, and value (the two former values being represented as integers).
The value can currently only be entered as a string (this will change to depend on the definition of the
variant in question). The special value (@) is interpreted as a null value, however.

simpleElement path [’variant’ variant-request] (o,r) This corresponds to a simple element request in Espec-
1. The path consists of a sequence of tag-selectors, where each of these can consist of either:

• A simple tag, consisting of a comma-separated type-value pair in parenthesis, possibly followed by
a colon (:) followed by an occurrences-specification (see below). The tag-value can be a number or
a string. If the first character is an apostrophe (’), this forces the value to be interpreted as a string,
even if it appears to be numerical.

• A WildThing, represented as a question mark (?), possibly followed by a colon (:) followed by an
occurrences specification (see below).

• A WildPath, represented as an asterisk (*). Note that the last element of the path should not be a
wildPath (wildpaths don’t work in this version).

The occurrences-specification can be either the string all, the string last, or an explicit value-
range. The value-range is represented as an integer (the starting point), possibly followed by a plus
(+) and a second integer (the number of elements, default being one).

The variant-request has the same syntax as the defaultVariantRequest above. Note that it may some-
times be useful to give an empty variant request, simply to disable the default for a specific set of
fields (we aren’t certain if this is proper Espec-1, but it works in this implementation).

The following is an example of an element specification belonging to the GILS profile.

simpleelement (1,10)
simpleelement (1,12)
simpleelement (2,1)
simpleelement (1,14)
simpleelement (4,1)
simpleelement (4,52)

9.3.8 The Schema Mapping (.map) Files

Sometimes, the client might want to receive a database record in a schema that differs from the native
schema of the record. For instance, a client might only know how to process WAIS records, while the
database record is represented in a more specific schema, such as GILS. In this module, a mapping of
data to one of the MARC formats is also thought of as a schema mapping (mapping the elements of the
record into fields consistent with the given MARC specification, prior to actually converting the data to the
ISO2709). This use of the object identifier for USMARC as a schema identifier represents an overloading
of the OID which might not be entirely proper. However, it represents the dual role of schema and record
syntax which is assumed by the MARC family in Z39.50.

These are the directives of the schema mapping file format:

targetName name (m) A symbolic name for the target schema of the table. Useful mostly for diagnostic
purposes.

targetRef OID-name (m) An OID name for the target schema. This is used, for instance, by a server
receiving a request to present a record in a different schema from the native one. The name, again, is
found in the oid module of YAZ.

map element-name target-path (o,r) Adds an element mapping rule to the table.

9.3.9 The MARC (ISO2709) Representation (.mar) Files

This file provides rules for representing a record in the ISO2709 format. The rules pertain mostly to the
values of the constant-length header of the record.

Zebra - User’s Guide and Reference 111 / 143

9.4 GRS-1 Exchange Formats

Converting records from the internal structure to an exchange format is largely an automatic process. Cur-
rently, the following exchange formats are supported:

• GRS-1. The internal representation is based on GRS-1/XML, so the conversion here is straightforward.
The system will create applied variant and supported variant lists as required, if a record contains variant
information.

• XML. The internal representation is based on GRS-1/XML so the mapping is trivial. Note that XML
schemas, preprocessing instructions and comments are not part of the internal representation and therefore
will never be part of a generated XML record. Future versions of the Zebra will support that.

• SUTRS. Again, the mapping is fairly straightforward. Indentation is used to show the hierarchical struc-
ture of the record. All "GRS-1" type records support both the GRS-1 and SUTRS representations.

• ISO2709-based formats (USMARC, etc.). Only records with a two-level structure (corresponding to
fields and subfields) can be directly mapped to ISO2709. For records with a different structuring (e.g.,
GILS), the representation in a structure like USMARC involves a schema-mapping (see Section 9.3.8), to
an "implied" USMARC schema (implied, because there is no formal schema which specifies the use of
the USMARC fields outside of ISO2709). The resultant, two-level record is then mapped directly from
the internal representation to ISO2709. See the GILS schema definition files for a detailed example of
this approach.

• Explain. This representation is only available for records belonging to the Explain schema.

• Summary. This ASN-1 based structure is only available for records belonging to the Summary schema -
or schema which provide a mapping to this schema (see the description of the schema mapping facility
above).

• SOIF. Support for this syntax is experimental, and is currently keyed to a private Index Data OID
(1.2.840.10003.5.1000.81.2). All abstract syntaxes can be mapped to the SOIF format, although nested
elements are represented by concatenation of the tag names at each level.

9.5 Extended indexing of MARC records

Extended indexing of MARC records will help you if you need index a combination of subfields, or index
only a part of the whole field, or use during indexing process embedded fields of MARC record.

Extended indexing of MARC records additionally allows:

• to index data in LEADER of MARC record

• to index data in control fields (with fixed length)

• to use during indexing the values of indicators

• to index linked fields for UNIMARC based formats

Note
In compare with simple indexing process the extended indexing may increase (about 2-3 times) the time
of indexing process for MARC records.

9.5.1 The index-formula

At the beginning, we have to define the term index-formula for MARC records. This term helps to un-
derstand the notation of extended indexing of MARC records by Zebra. Our definition is based on the
document "The table of conformity for Z39.50 use attributes and RUSMARC fields". The document is
available only in Russian language.

The index-formula is the combination of subfields presented in such way:

71-00$a, $g, $h ($c){.$b ($c)} , (1)

We know that Zebra supports a BIB-1 attribute - right truncation. In this case, the index-formula (1) consists
from forms, defined in the same way as (1)

71-00$a, $g, $h
71-00$a, $g
71-00$a

Note
The original MARC record may be without some elements, which included in index-formula.

This notation includes such operands as:

It means whitespace character.

- The position may contain any value, defined by MARC format. For example, index-formula

70-#1$a, $g , (2)

includes

700#1$a, $g
701#1$a, $g
702#1$a, $g

{...} The repeatable elements are defined in figure-brackets {}. For example, index-formula

71-00$a, $g, $h ($c){.$b ($c)} , (3)

includes

71-00$a, $g, $h ($c). $b ($c)
71-00$a, $g, $h ($c). $b ($c). $b ($c)
71-00$a, $g, $h ($c). $b ($c). $b ($c). $b ($c)

http://www.rba.ru/rusmarc/soft/Z39-50.htm

Zebra - User’s Guide and Reference 113 / 143

Note
All another operands are the same as accepted in MARC world.

9.5.2 Notation of index-formula for Zebra

Extended indexing overloads path of elm definition in abstract syntax file of Zebra (.abs file). It means
that names beginning with "mc-" are interpreted by Zebra as index-formula. The database index is created
and linked with access point (BIB-1 use attribute) according to this formula.

For example, index-formula

71-00$a, $g, $h ($c){.$b ($c)} , (4)

in .abs file looks like:

mc-71.00_$a,_$g,_$h_(_$c_){.$b_(_$c_)}

The notation of index-formula uses the operands:

_ It means whitespace character.

. The position may contain any value, defined by MARC format. For example, index-formula

70-#1$a, $g , (5)

matches mc-70._1_$a,_$g_ and includes

700_1_$a,_$g_
701_1_$a,_$g_
702_1_$a,_$g_

{...} The repeatable elements are defined in figure-brackets {}. For example, index-formula

71#00$a, $g, $h ($c) {.$b ($c)} , (6)

matches mc-71.00_$a,_$g,_$h_(_$c_){.$b_(_$c_)} and includes

71.00_$a,_$g,_$h_(_$c_).$b_(_$c_)
71.00_$a,_$g,_$h_(_$c_).$b_(_$c_).$b_(_$c_)
71.00_$a,_$g,_$h_(_$c_).$b_(_$c_).$b_(_$c_).$b_(_$c_)

<...> Embedded index-formula (for linked fields) is between <>. For example, index-formula

4--#-$170-#1$a, $g ($c) , (7)

matches mc-4.._._$1<70._1_$a,_$g_(_$c_)>_ and includes

463_._$1<70._1_$a,_$g_(_$c_)>_

Note
All another operands are the same as accepted in MARC world.

9.5.2.1 Examples

1. indexing LEADER

You need to use keyword "ldr" to index leader. For example, indexing data from 6th and 7th position
of LEADER

elm mc-ldr[6] Record-type !
elm mc-ldr[7] Bib-level !

2. indexing data from control fields

indexing date (the time added to database)

elm mc-008[0-5] Date/time-added-to-db !

or for RUSMARC (this data included in 100th field)

elm mc-100___$a[0-7]_ Date/time-added-to-db !

3. using indicators while indexing

For RUSMARC index-formula 70-#1$a, $g matches

elm 70._1_$a,_$g_ Author !:w,!:p

When Zebra finds a field according to "70." pattern it checks the indicators. In this case the value
of first indicator doesn’t mater, but the value of second one must be whitespace, in another case a
field is not indexed.

4. indexing embedded (linked) fields for UNIMARC based formats

For RUSMARC index-formula 4--#-$170-#1$a, $g ($c) matches

elm mc-4.._._$1<70._1_$a,_$g_(_$c_)>_ Author !:w,!:p

Data are extracted from record if the field matches to "4.._." pattern and data in linked field match
to embedded index-formula 70._1_$a,_$g_(_$c_).

Zebra - User’s Guide and Reference 115 / 143

Chapter 10

Field Structure and Character Sets

In order to provide a flexible approach to national character set handling, Zebra allows the administrator to
configure the set up the system to handle any 8-bit character set — including sets that require multi-octet
diacritics or other multi-octet characters. The definition of a character set includes a specification of the
permissible values, their sort order (this affects the display in the SCAN function), and relationships be-
tween upper- and lowercase characters. Finally, the definition includes the specification of space characters
for the set.

The operator can define different character sets for different fields, typical examples being standard text
fields, numerical fields, and special-purpose fields such as WWW-style linkages (URx).

Zebra 1.3 and Zebra versions 2.0.18 and earlier required that the field type is a single character, e.g. w (for
word), and p for phrase. Zebra 2.0.20 and later allow field types to be any string. This allows for greater
flexibility - in particular per-locale (language) fields can be defined.

Version 2.0.20 of Zebra can also be configured - per field - to use the ICU library to perform tokenization
and normalization of strings. This is an alternative to the "charmap" files which has been part of Zebra since
its first release.

10.1 The default.idx file

The field types, and hence character sets, are associated with data elements by the indexing rules (say
title:w) in the various filters. Fields are defined in a field definition file which, by default, is called
default.idx. This file provides the association between field type codes and the character map files
(with the .chr suffix). The format of the .idx file is as follows

index field type code This directive introduces a new search index code. The argument is a one-
character code to be used in the .abs files to select this particular index type. An index, roughly,
corresponds to a particular structure attribute during search. Refer to the section called “Z39.50
Search”.

sort field code type This directive introduces a sort index. The argument is a one-character code to
be used in the .abs fie to select this particular index type. The corresponding use attribute must be
used in the sort request to refer to this particular sort index. The corresponding character map (see
below) is used in the sort process.

http://www.icu-project.org/

completeness boolean This directive enables or disables complete field indexing. The value of the
boolean should be 0 (disable) or 1. If completeness is enabled, the index entry will contain the
complete contents of the field (up to a limit), with words (non-space characters) separated by single
space characters (normalized to " " on display). When completeness is disabled, each word is indexed
as a separate entry. Complete subfield indexing is most useful for fields which are typically browsed
(e.g., titles, authors, or subjects), or instances where a match on a complete subfield is essential (e.g.,
exact title searching). For fields where completeness is disabled, the search engine will interpret a
search containing space characters as a word proximity search.

firstinfield boolean This directive enables or disables first-in-field indexing. The value of the boolean
should be 0 (disable) or 1.

alwaysmatches boolean This directive enables or disables alwaysmatches indexing. The value of the
boolean should be 0 (disable) or 1.

charmap filename This is the filename of the character map to be used for this index for field type. See
Section 10.2 for details.

icuchain filename Specifies the filename with ICU tokenization and normalization rules. See Sec-
tion 10.3 for details. Using icuchain for a field type is an alternative to charmap. It does not make
sense to define both icuchain and charmap for the same field type.

Example 10.1 Field types
Following are three excerpts of the standard tab/default.idx configuration file. Notice that the
index and sort are grouping directives, which bind all other following directives to them:

Traditional word index
Used if completeness is ’incomplete field’ (@attr 6=1) and
structure is word/phrase/word-list/free-form-text/document-text
index w
completeness 0
position 1
alwaysmatches 1
firstinfield 1
charmap string.chr

...

Null map index (no mapping at all)
Used if structure=key (@attr 4=3)
index 0
completeness 0
position 1
charmap @

...

Sort register
sort s
completeness 1

Zebra - User’s Guide and Reference 117 / 143

charmap string.chr

10.2 Charmap Files

The character map files are used to define the word tokenization and character normalization performed
before inserting text into the inverse indexes. Zebra ships with the predefined character map files tab/*.
chr. Users are allowed to add and/or modify maps according to their needs.

File name Intended type Description

numeric.chr :n

Numeric digit tokenization and
normalization map. All
characters not in the set
-{0-9}., will be suppressed.
Note that floating point
numbers are processed fine, but
scientific exponential numbers
are trashed.

scan.chr :w or :p

Word tokenization char map for
Scandinavian languages. This
one resembles the generic word
tokenization character map
tab/string.chr, the main
differences are sorting of the
special characters üzæäøöå
and equivalence maps according
to Scandinavian language rules.

string.chr :w or :p

General word tokenization and
normalization character map,
mostly useful for English texts.
Use this to derive your own
language tokenization and
normalization derivatives.

urx.chr :u
URL parsing and tokenization
character map.

@ :0

Do-nothing character map used
for literal binary indexing.
There is no existing file
associated to it, and there is no
normalization or tokenization
performed at all.

Table 10.1: Character maps predefined in Zebra

The contents of the character map files are structured as follows:

encoding encoding-name This directive must be at the very beginning of the file, and it specifies the
character encoding used in the entire file. If omitted, the encoding ISO-8859-1 is assumed.

For example, one of the test files found at test/rusmarc/tab/string.chr contains the fol-
lowing encoding directive:

encoding koi8-r

and the test file test/charmap/string.utf8.chr is encoded in UTF-8:

encoding utf-8

lowercase value-set This directive introduces the basic value set of the field type. The format is an
ordered list (without spaces) of the characters which may occur in "words" of the given type. The
order of the entries in the list determines the sort order of the index. In addition to single characters,
the following combinations are legal:

• Backslashes may be used to introduce three-digit octal, or two-digit hex representations of single
characters (preceded by x). In addition, the combinations \\, \\r, \\n, \\t, \\s (space — remember that
real space-characters may not occur in the value definition), and \\ are recognized, with their usual
interpretation.

• Curly braces {} may be used to enclose ranges of single characters (possibly using the escape
convention described in the preceding point), e.g., {a-z} to introduce the standard range of ASCII
characters. Note that the interpretation of such a range depends on the concrete representation in
your local, physical character set.

• parentheses () may be used to enclose multi-byte characters - e.g., diacritics or special national
combinations (e.g., Spanish "ll"). When found in the input stream (or a search term), these charac-
ters are viewed and sorted as a single character, with a sorting value depending on the position of
the group in the value statement.

For example, scan.chr contains the following lowercase normalization and sorting order:

lowercase {0-9}{a-y}üzæäøöå

uppercase value-set This directive introduces the upper-case equivalences to the value set (if any). The
number and order of the entries in the list should be the same as in the lowercase directive.

For example, scan.chr contains the following uppercase equivalent:

uppercase {0-9}{A-Y}ÜZÆÄØÖÅ

space value-set This directive introduces the character which separate words in the input stream. De-
pending on the completeness mode of the field in question, these characters either terminate an index
entry, or delimit individual "words" in the input stream. The order of the elements is not significant
— otherwise the representation is the same as for the uppercase and lowercase directives.

For example, scan.chr contains the following space instruction:

space {\001-\040}!"#$%&’\()*+,-./:;<=>?@\[\\]^_‘\{|}~

Zebra - User’s Guide and Reference 119 / 143

map value-set target This directive introduces a mapping between each of the members of the value-
set on the left to the character on the right. The character on the right must occur in the value set
(the lowercase directive) of the character set, but it may be a parenthesis-enclosed multi-octet
character. This directive may be used to map diacritics to their base characters, or to map HTML-
style character-representations to their natural form, etc. The map directive can also be used to ignore
leading articles in searching and/or sorting, and to perform other special transformations.

For example, scan.chr contains the following map instructions among others, to make sure that
HTML entity encoded Danish special characters are mapped to the equivalent Latin-1 characters:

map (æ) æ
map (ø) ø
map (å) å

In addition to specifying sort orders, space (blank) handling, and upper/lowercase folding, you can
also use the character map files to make Zebra ignore leading articles in sorting records, or when
doing complete field searching.

This is done using the map directive in the character map file. In a nutshell, what you do is map
certain sequences of characters, when they occur in the beginning of a field, to a space. Assuming
that the character "@" is defined as a space character in your file, you can do:

map (^The\s) @
map (^the\s) @

The effect of these directives is to map either ’the’ or ’The’, followed by a space character, to a space.
The hat ˆ character denotes beginning-of-field only when complete-subfield indexing or sort indexing
is taking place; otherwise, it is treated just as any other character.

Because the default.idx file can be used to associate different character maps with different
indexing types -- and you can create additional indexing types, should the need arise -- it is possible
to specify that leading articles should be ignored either in sorting, in complete-field searching, or
both.

If you ignore certain prefixes in sorting, then these will be eliminated from the index, and sorting
will take place as if they weren’t there. However, if you set the system up to ignore certain prefixes
in searching, then these are deleted both from the indexes and from query terms, when the client
specifies complete-field searching. This has the effect that a search for ’the science journal’ and
’science journal’ would both produce the same results.

equivalent value-set This directive introduces equivalence classes of strings for searching purposes
only. It’s a one-to-many conversion that takes place only during search before the map directive
kicks in.

For example given:

equivalent æä(ae)

a search for the äsel will be be match any of æsel, äsel and aesel.

10.3 ICU Chain Files

The ICU chain files defines a chain of rules which specify the conversion process to be carried out for each
record string for indexing.

Both searching and sorting is based on the sort normalization that ICU provides. This means that scan and
sort will return terms in the sort order given by ICU.

Zebra is using YAZ’ ICU wrapper. Refer to the yaz-icu man page for documentation about the ICU chain
rules.

Tip
Use the yaz-icu program to test your icuchain rules.

Example 10.2 Indexing Greek text
Consider a system where all "regular" text is to be indexed using as Greek (locale: EL). We would have to
change our index type file - to read

Index greek words
index w
completeness 0
position 1
alwaysmatches 1
firstinfield 1
icuahain greek.xml
..

The ICU chain file greek.xml could look as follows:

<icu_chain locale="el">
<transform rule="[:Control:] Any-Remove"/>
<tokenize rule="l"/>
<transform rule="[[:WhiteSpace:][:Punctuation:]] Remove"/>
<display/>
<casemap rule="l"/>

</icu_chain>

Zebra is shipped with a field types file icu.idx which is an ICU chain version of default.idx.

Example 10.3 MARCXML indexing using ICU
The directory examples/marcxml includes a complete sample with MARCXML records that are DOM
XML indexed using ICU chain rules. Study the README in the marcxml directory for details.

http://www.icu-project.org/
http://www.indexdata.com/yaz/doc/yaz-icu.html

Zebra - User’s Guide and Reference 121 / 143

Chapter 11

Reference

The material in this chapter is drawn directly from the individual manual entries.

11.1 zebraidx

zebraidx — Zebra Administrative Tool

Synopsis

zebraidx [-c config] [-d database] [-f number] [-g group] [-l file] [-L] [-m mbytes]
[-n] [-s] [-v level] [-t type] [-v] command [file...]

DESCRIPTION

zebraidx allows you to insert, delete or updates records in Zebra. zebraidx accepts a set options (see
below) and exactly one command (mandatory).

COMMANDS

update directory Update the register with the files contained in directory . If no directory is pro-
vided, a list of files is read from stdin. See Administration in the Zebra Manual.

delete directory Remove the records corresponding to the files found under directory from the reg-
ister.

adelete directory Remove the records corresponding to the files found under directory from the
register. Unlike command delete this command does not fail if a record does not exist (but which
is attempted deleted).

commit Write the changes resulting from the last update commands to the register. This command
is only available if the use of shadow register files is enabled (see Shadow Registers in the Zebra
Manual).

check options Runs consistency check of register. May take a long time. Options may be one of quick,
default or full.

clean Clean shadow files and "forget" changes.

create database Create database.

drop database Drop database (delete database).

init Deletes an entire register (all files in shadow+register areas).

OPTIONS

-c config-file Read the configuration file config-file instead of zebra.cfg.

-d database The records located should be associated with the database name database for access
through the Z39.50 server.

-f number Specify how many per-record log lines, zebraidx, should produce during indexing and during
register check (check command). If this option is not given, a value of 1000 is used.

-g group Update the files according to the group settings for group (see Zebra Configuration File in the
Zebra manual).

-l file Write log messages to file instead of stderr.

-L Makes zebraidx skip symbolic links. By default, zebraidx follows them.

-m mbytes Use mbytes of memory before flushing keys to background storage. This setting affects per-
formance when updating large databases.

-n Disable the use of shadow registers for this operation (see Shadow Registers in the Zebra manual).

-s Show analysis of the indexing process. The maintenance program works in a read-only mode and doesn’t
change the state of the index. This options is very useful when you wish to test a new profile.

-t type Update all files as type. Currently, the types supported are text, alvis and grs.subtype.
Generally, it is probably advisable to specify the record types in the zebra.cfg file (see Record
Types in the Zebra manual), to avoid confusion at subsequent updates.

-V Show Zebra version.

-v level Set the log level to level. level should be one of none, debug, and all.

FILES

zebra.cfg

Zebra - User’s Guide and Reference 123 / 143

SEE ALSO

zebrasrv(8)

11.2 zebrasrv

zebrasrv — Zebra Server

Synopsis

zebrasrv [-install] [-installa] [-remove] [-a file] [-v level] [-l file] [-u uid]
[-c config] [-f vconfig] [-C fname] [-t minutes] [-k kilobytes] [-d daemon] [-w dir]
[-p pidfile] [-ziDST1] [listener-spec...]

DESCRIPTION

Zebra is a high-performance, general-purpose structured text indexing and retrieval engine. It reads struc-
tured records in a variety of input formats (e.g. email, XML, MARC) and allows access to them through
exact boolean search expressions and relevance-ranked free-text queries.

zebrasrv is the Z39.50 and SRU frontend server for the Zebra search engine and indexer.

On Unix you can run the zebrasrv server from the command line - and put it in the background. It may also
operate under the inet daemon. On WIN32 you can run the server as a console application or as a WIN32
Service.

OPTIONS

The options for zebrasrv are the same as those for YAZ’ yaz-ztest. Option -c specifies a Zebra configura-
tion file - if omitted zebra.cfg is read.

-a file Specify a file for dumping PDUs (for diagnostic purposes). The special name - (dash) sends
output to stderr.

-S Don’t fork or make threads on connection requests. This is good for debugging, but not recommended
for real operation: Although the server is asynchronous and non-blocking, it can be nice to keep a
software malfunction (okay then, a crash) from affecting all current users. The server can only accept
a single connection in this mode.

-1 Like -S but after one session the server exits. This mode is for debugging only.

-T Operate the server in threaded mode. The server creates a thread for each connection rather than a fork
a process. Only available on UNIX systems that offers POSIX threads.

-s Use the SR protocol (obsolete).

-z Use the Z39.50 protocol (default). This option and -s complement each other. You can use both
multiple times on the same command line, between listener-specifications (see below). This way, you
can set up the server to listen for connections in both protocols concurrently, on different local ports.

-l file Specify an output file for the diagnostic messages. The default is to write this information to
stderr

-c config-file Read configuration information from config-file. The default configuration is
./zebra.cfg

-f vconfig This specifies an XML file that describes one or more YAZ frontend virtual servers. See
section VIRTUAL HOSTS for details.

-C fname Sets SSL certificate file name for server (PEM).

-v level The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,malloc,all,none}.

-u uid Set user ID. Sets the real UID of the server process to that of the given user. It’s useful if
you aren’t comfortable with having the server run as root, but you need to start it as such to bind a
privileged port.

-w working-directory The server changes to this working directory during before listening on in-
coming connections. This option is useful when the server is operating from the inetd daemon (see
-i).

-p pidfile Specifies that the server should write its Process ID to file given by pidfile. A typical
location would be /var/run/zebrasrv.pid.

-i Use this to make the the server run from the inetd server (UNIX only). Make sure you use the logfile
option -l in conjunction with this mode and specify the -l option before any other options.

-D Use this to make the server put itself in the background and run as a daemon. If neither -i nor -D is
given, the server starts in the foreground.

-install Use this to install the server as an NT service (Windows NT/2000/XP only). Control the server
by going to the Services in the Control Panel.

-installa Use this to install and activate the server as an NT service (Windows NT/2000/XP only).
Control the server by going to the Services in the Control Panel.

-remove Use this to remove the server from the NT services (Windows NT/2000/XP only).

-t minutes Idle session timeout, in minutes. Default is 60 minutes.

-k size Maximum record size/message size, in kilobytes. Default is 1024 KB (1 MB).

-d daemon Set name of daemon to be used in hosts access file. See hosts_access(5) and tcpd(8).

A listener-address consists of an optional transport mode followed by a colon (:) followed by a
listener address. The transport mode is either a file system socket unix, a SSL TCP/IP socket ssl, or a
plain TCP/IP socket tcp (default).

For TCP, an address has the form

Zebra - User’s Guide and Reference 125 / 143

hostname | IP-number [: portnumber]

The port number defaults to 210 (standard Z39.50 port) for privileged users (root), and 9999 for normal
users. The special hostname "@" is mapped to the address INADDR_ANY, which causes the server to
listen on any local interface.

The default behavior for zebrasrv - if started as non-privileged user - is to establish a single TCP/IP
listener, for the Z39.50 protocol, on port 9999.

zebrasrv @
zebrasrv tcp:some.server.name.org:1234
zebrasrv ssl:@:3000

To start the server listening on the registered port for Z39.50, or on a filesystem socket, and to drop root
privileges once the ports are bound, execute the server like this from a root shell:

zebrasrv -u daemon @
zebrasrv -u daemon tcp:@:210
zebrasrv -u daemon unix:/some/file/system/socket

Here daemon is an existing user account, and the unix socket /some/file/system/socket is read-
able and writable for the daemon account.

Z39.50 Protocol Support and Behavior

Z39.50 Initialization

During initialization, the server will negotiate to version 3 of the Z39.50 protocol, and the option bits for
Search, Present, Scan, NamedResultSets, and concurrentOperations will be set, if requested by the client.
The maximum PDU size is negotiated down to a maximum of 1 MB by default.

Z39.50 Search

The supported query type are 1 and 101. All operators are currently supported with the restriction that only
proximity units of type "word" are supported for the proximity operator. Queries can be arbitrarily complex.
Named result sets are supported, and result sets can be used as operands without limitations. Searches may
span multiple databases.

The server has full support for piggy-backed retrieval (see also the following section).

Z39.50 Present

The present facility is supported in a standard fashion. The requested record syntax is matched against the
ones supported by the profile of each record retrieved. If no record syntax is given, SUTRS is the default.
The requested element set name, again, is matched against any provided by the relevant record profiles.

Z39.50 Scan

The attribute combinations provided with the termListAndStartPoint are processed in the same way as
operands in a query (see above). Currently, only the term and the globalOccurrences are returned with the
termInfo structure.

Z39.50 Sort

Z39.50 specifies three different types of sort criteria. Of these Zebra supports the attribute specification type
in which case the use attribute specifies the "Sort register". Sort registers are created for those fields that are
of type "sort" in the default.idx file. The corresponding character mapping file in default.idx specifies the
ordinal of each character used in the actual sort.

Z39.50 allows the client to specify sorting on one or more input result sets and one output result set. Zebra
supports sorting on one result set only which may or may not be the same as the output result set.

Z39.50 Close

If a Close PDU is received, the server will respond with a Close PDU with reason=FINISHED, no matter
which protocol version was negotiated during initialization. If the protocol version is 3 or more, the server
will generate a Close PDU under certain circumstances, including a session timeout (60 minutes by default),
and certain kinds of protocol errors. Once a Close PDU has been sent, the protocol association is considered
broken, and the transport connection will be closed immediately upon receipt of further data, or following
a short timeout.

Z39.50 Explain

Zebra maintains a "classic" Z39.50 Explain database on the side. This database is called IR-Explain-1
and can be searched using the attribute set exp-1.

The records in the explain database are of type grs.sgml. The root element for the Explain grs.sgml
records is explain, thus explain.abs is used for indexing.

Note
Zebra must be able to locate explain.abs in order to index the Explain records properly. Zebra will
work without it but the information will not be searchable.

The SRU Server

In addition to Z39.50, Zebra supports the more recent and web-friendly IR protocol SRU. SRU can be car-
ried over SOAP or a REST-like protocol that uses HTTP GET or POST to request search responses. The re-
quest itself is made of parameters such as query, startRecord, maximumRecords and recordSchema;
the response is an XML document containing hit-count, result-set records, diagnostics, etc. SRU can be
thought of as a re-casting of Z39.50 semantics in web-friendly terms; or as a standardisation of the ad-hoc

https://www.loc.gov/z3950/agency/markup/07.html
https://www.loc.gov/standards/sru/

Zebra - User’s Guide and Reference 127 / 143

query parameters used by search engines such as Google and AltaVista; or as a superset of A9’s OpenSearch
(which it predates).

Zebra supports Z39.50, SRU GET, SRU POST, SRU SOAP (SRW) - on the same port, recognising what
protocol is used by each incoming requests and handling them accordingly. This is a achieved through the
use of Deep Magic; civilians are warned not to stand too close.

Running zebrasrv as an SRU Server

Because Zebra supports all protocols on one port, it would seem to follow that the SRU server is run in
the same way as the Z39.50 server, as described above. This is true, but only in an uninterestingly vacuous
way: a Zebra server run in this manner will indeed recognise and accept SRU requests; but since it doesn’t
know how to handle the CQL queries that these protocols use, all it can do is send failure responses.

Note
It is possible to cheat, by having SRU search Zebra with a PQF query instead of CQL, using the
x-pquery parameter instead of query. This is a non-standard extension of CQL, and a very
naughty thing to do, but it does give you a way to see Zebra serving SRU ``right out of the box”. If
you start your favourite Zebra server in the usual way, on port 9999, then you can send your web browser
to:

http://localhost:9999/Default?version=1.1
&operation=searchRetrieve
&x-pquery=mineral
&startRecord=1
&maximumRecords=1

This will display the XML-formatted SRU response that includes the first record in the result-set found by
the query mineral. (For clarity, the SRU URL is shown here broken across lines, but the lines should
be joined together to make single-line URL for the browser to submit.)

In order to turn on Zebra’s support for CQL queries, it’s necessary to have the YAZ generic front-end (which
Zebra uses) translate them into the Z39.50 Type-1 query format that is used internally. And to do this, the
generic front-end’s own configuration file must be used. See the section called “YAZ server virtual hosts”;
the salient point for SRU support is that zebrasrv must be started with the -f frontendConfigFile
option rather than the -c zebraConfigFile option, and that the front-end configuration file must
include both a reference to the Zebra configuration file and the CQL-to-PQF translator configuration file.

A minimal front-end configuration file that does this would read as follows:

<yazgfs>
<server>
<config>zebra.cfg</config>
<cql2rpn>../../tab/pqf.properties</cql2rpn>

</server>
</yazgfs>

The <config> element contains the name of the Zebra configuration file that was previously specified by
the -c command-line argument, and the <cql2rpn> element contains the name of the CQL properties
file specifying how various CQL indexes, relations, etc. are translated into Type-1 queries.

A zebra server running with such a configuration can then be queried using proper, conformant SRU URLs
with CQL queries:

http://localhost:9999/Default?version=1.1
&operation=searchRetrieve
&query=title=utah and description=epicent*
&startRecord=1
&maximumRecords=1

SRU Protocol Support and Behavior

Zebra running as an SRU server supports SRU version 1.1, including CQL version 1.1. In particular, it
provides support for the following elements of the protocol.

SRU Search and Retrieval

Zebra supports the searchRetrieve operation.

One of the great strengths of SRU is that it mandates a standard query language, CQL, and that all conform-
ing implementations can therefore be trusted to correctly interpret the same queries. It is with some shame,
then, that we admit that Zebra also supports an additional query language, our own Prefix Query Format
(PQF). A PQF query is submitted by using the extension parameter x-pquery, in which case the query
parameter must be omitted, which makes the request not valid SRU. Please feel free to use this facility
within your own applications; but be aware that it is not only non-standard SRU but not even syntactically
valid, since it omits the mandatory query parameter.

SRU Scan

Zebra supports scan operation. Scanning using CQL syntax is the default, where the standard scanClause
parameter is used.

In addition, a mutant form of SRU scan is supported, using the non-standard x-pScanClause parameter
in place of the standard scanClause to scan on a PQF query clause.

SRU Explain

Zebra supports explain.

The ZeeRex record explaining a database may be requested either with a fully fledged SRU request (with
operation=explain and version-number specified) or with a simple HTTP GET at the server’s base-
name. The ZeeRex record returned in response is the one embedded in the YAZ Frontend Server configu-
ration file that is described in the the section called “YAZ server virtual hosts”.

http://www.indexdata.com/yaz/doc/tools.html#PQF

Zebra - User’s Guide and Reference 129 / 143

Unfortunately, the data found in the CQL-to-PQF text file must be added by hand-craft into the explain
section of the YAZ Frontend Server configuration file to be able to provide a suitable explain record. Too
bad, but this is all extreme new alpha stuff, and a lot of work has yet to be done ..

There is no linkage whatsoever between the Z39.50 explain model and the SRU explain response (well,
at least not implemented in Zebra, that is ..). Zebra does not provide a means using Z39.50 to obtain the
ZeeRex record.

Other SRU operations

In the Z39.50 protocol, Initialization, Present, Sort and Close are separate operations. In SRU, however,
these operations do not exist.

• SRU has no explicit initialization handshake phase, but commences immediately with searching, scanning
and explain operations.

• Neither does SRU have a close operation, since the protocol is stateless and each request is self-contained.
(It is true that multiple SRU request/response pairs may be implemented as multiple HTTP request/re-
sponse pairs over a single persistent TCP/IP connection; but the closure of that connection is not a
protocol-level operation.)

• Retrieval in SRU is part of the searchRetrieve operation, in which a search is submitted and the
response includes a subset of the records in the result set. There is no direct analogue of Z39.50’s Present
operation which requests records from an established result set. In SRU, this is achieved by sending a sub-
sequent searchRetrieve request with the query cql.resultSetId=id where id is the identifier
of the previously generated result-set.

• Sorting in CQL is done within the searchRetrieve operation - in v1.1, by an explicit sort pa-
rameter, but the forthcoming v1.2 or v2.0 will most likely use an extension of the query language, CQL
sorting.

It can be seen, then, that while Zebra operating as an SRU server does not provide the same set of operations
as when operating as a Z39.50 server, it does provide equivalent functionality.

SRU Examples

Surf into http://localhost:9999 to get an explain response, or use

http://localhost:9999/?version=1.1&operation=explain

See number of hits for a query

http://localhost:9999/?version=1.1&operation=searchRetrieve
&query=text=(plant%20and%20soil)

Fetch record 5-7 in Dublin Core format

http://localhost:9999/?version=1.1&operation=searchRetrieve
&query=text=(plant%20and%20soil)
&startRecord=5&maximumRecords=2&recordSchema=dc

http://zing.z3950.org/cql/sorting.html
http://zing.z3950.org/cql/sorting.html

Even search using PQF queries using the extended naughty parameter x-pquery

http://localhost:9999/?version=1.1&operation=searchRetrieve
&x-pquery=@attr%201=text%20@and%20plant%20soil

Or scan indexes using the extended extremely naughty parameter x-pScanClause

http://localhost:9999/?version=1.1&operation=scan
&x-pScanClause=@attr%201=text%20something

Don’t do this in production code! But it’s a great fast debugging aid.

YAZ server virtual hosts

The Virtual hosts mechanism allows a YAZ frontend server to support multiple backends. A backend is
selected on the basis of the TCP/IP binding (port+listening address) and/or the virtual host.

A backend can be configured to execute in a particular working directory. Or the YAZ frontend may perform
CQL to RPN conversion, thus allowing traditional Z39.50 backends to be offered as a SRU service. SRU
Explain information for a particular backend may also be specified.

For the HTTP protocol, the virtual host is specified in the Host header. For the Z39.50 protocol, the virtual
host is specified as in the Initialize Request in the OtherInfo, OID 1.2.840.10003.10.1000.81.1.

Note
Not all Z39.50 clients allows the VHOST information to be set. For those the selection of the backend
must rely on the TCP/IP information alone (port and address).

The YAZ frontend server uses XML to describe the backend configurations. Command-line option -f
specifies filename of the XML configuration.

The configuration uses the root element yazgfs. This element includes a list of listen elements, fol-
lowed by one or more server elements.

The listen describes listener (transport end point), such as TCP/IP, Unix file socket or SSL server. Con-
tent for a listener:

CDATA (required) The CDATA for the listen element holds the listener string, such as tcp:@:210,
tcp:server1:2100, etc.

attribute id (optional) identifier for this listener. This may be referred to from server sections.

Note
We expect more information to be added for the listen section in a future version, such as CERT file for
SSL servers.

The server describes a server and the parameters for this server type. Content for a server:

http://www.loc.gov/standards/sru/cql/
https://www.loc.gov/standards/sru/

Zebra - User’s Guide and Reference 131 / 143

attribute id (optional) Identifier for this server. Currently not used for anything, but it might be for
logging purposes.

attribute listenref (optional) Specifies listener for this server. If this attribute is not given, the server
is accessible from all listener. In order for the server to be used for real, however, the virtual host
must match (if specified in the configuration).

element config (optional) Specifies the server configuration. This is equivalent to the config specified
using command line option -c.

element directory (optional) Specifies a working directory for this backend server. If specified, the
YAZ frontend changes current working directory to this directory whenever a backend of this type is
started (backend handler bend_start), stopped (backend handler hand_stop) and initialized (bend_init).

element host (optional) Specifies the virtual host for this server. If this is specified a client must specify
this host string in order to use this backend.

element cql2rpn (optional) Specifies a filename that includes CQL to RPN conversion for this backend
server. See CQL section in YAZ manual. If given, the backend server will only "see" a Type-1/RPN
query.

element explain (optional) Specifies SRU ZeeRex content for this server - copied verbatim to the client.
As things are now, some of the Explain content seems redundant because host information, etc. is
also stored elsewhere.

The format of the Explain record is described in detail, with examples, on the file at the ZeeRex
web-site.

The XML below configures a server that accepts connections from two ports, TCP/IP port 9900 and a local
UNIX file socket. We name the TCP/IP server public and the other server internal.

<yazgfs>
<listen id="public">tcp:@:9900</listen>
<listen id="internal">unix:/var/tmp/socket</listen>
<server id="server1">

<host>server1.mydomain</host>
<directory>/var/www/s1</directory>
<config>config.cfg</config>

</server>
<server id="server2">

<host>server2.mydomain</host>
<directory>/var/www/s2</directory>
<config>config.cfg</config>
<cql2rpn>../etc/pqf.properties</cql2rpn>
<explain xmlns="http://explain.z3950.org/dtd/2.0/">

<serverInfo>
<host>server2.mydomain</host>
<port>9900</port>
<database>a</database>

</serverInfo>

http://www.loc.gov/standards/sru/cql/
http://www.loc.gov/standards/sru/cql/
https://www.loc.gov/standards/sru/
http://zeerex.z3950.org/

</explain>
</server>
<server id="server3" listenref="internal">
<directory>/var/www/s3</directory>
<config>config.cfg</config>

</server>
</yazgfs>

There are three configured backend servers. The first two servers, "server1" and "server2", can be
reached by both listener addresses - since no listenref attribute is specified. In order to distinguish
between the two a virtual host has been specified for each of server in the host elements.

For "server2" elements for CQL to RPN conversion is supported and explain information has been
added (a short one here to keep the example small).

The third server, "server3" can only be reached via listener "internal".

SEE ALSO

zebraidx(1)

11.3 idzebra-config

idzebra-config — Script to get information about idzebra

Synopsis

idzebra-config [--prefix[=DIR]] [--version] [--libs] [--lalibs] [--cflags] [--tab]
[--modules] [libraries...]

DESCRIPTION

idzebra-config is a script that returns information that your own software should use to build software that
uses idzebra.

The following libraries are supported:

None

OPTIONS

--prefix[=DIR] Returns prefix of idzebra or assume a different one if DIR is specified.

--version Returns version of idzebra.

http://www.loc.gov/standards/sru/cql/

Zebra - User’s Guide and Reference 133 / 143

--libs Library specification be used when linking with idzebra.

--lalibs Return library specification.

--cflags Return C Compiler flags.

--tab Return directory of idzebra tables.

--modules Return directory for Zebra modules.

FILES

/usr/bin/idzebra-config-2.0

/usr/lib/libidzebra*2.0.a

/usr/include/idzebra-2.0/idzebra/*.h

11.4 idzebra-abs2dom

idzebra-abs2dom — Converts .abs files to DOM XML configuration files

Synopsis

idzebra-abs2dom [file]

DESCRIPTION

idzebra-abs2dom converts grs filter .abs files to DOM XML filter index XSLT files. The melm and xelm
directives are converted to XSLT rules. Conversion of elm directives are not supported.

SEE ALSO

zebraidx(1)

Zebra - User’s Guide and Reference 135 / 143

Appendix A

License

Zebra Server, Copyright © 1994-2023 Index Data ApS.

Zebra is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

Zebra is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with Zebra; see the file LI-
CENSE.zebra. If not, write to the Free Software Foundation, 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Zebra - User’s Guide and Reference 137 / 143

Appendix B

GNU General Public License

B.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software
- to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program pro-
prietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

B.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

B.2.1 Section 0

This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

B.2.2 Section 1

You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

B.2.3 Section 2

You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that

Zebra - User’s Guide and Reference 139 / 143

you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: If the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

B.2.4 Section 3

You may copy and distribute the Program (or a work based on it, under Section 2 in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

B.2.5 Section 4

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

B.2.6 Section 5

You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

B.2.7 Section 6

Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

B.2.8 Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

Zebra - User’s Guide and Reference 141 / 143

B.2.9 Section 8

If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

B.2.10 Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this Li-
cense which applies to it and “any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

B.2.11 Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

B.2.12 NO WARRANTY Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

B.2.13 Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING

ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

B.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type “show w”. This is free software, and you are welcome to redistribute it
under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than “show w” and
“show c”; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision” (which makes passes
at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

Zebra - User’s Guide and Reference 143 / 143

Appendix C

About Index Data and the Zebra Server

Index Data is a consulting and software-development enterprise that specializes in library and information
management systems. Our interests and expertise span a broad range of related fields, and one of our
primary, long-term objectives is the development of a powerful information management system with open
network interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the network-
ing community, and to further the development of quality software for open network communication.

We’ll be happy to answer questions about the software, and about ourselves in general.

Index Data ApS
Købmagergade 43, 2.
1150 Copenhagen K
Denmark
Phone +45 3341 0100
Fax +45 3341 0101
Email info@indexdata.dk

The Random House College Dictionary, 1975 edition offers this definition of the word "Zebra":

Zebra, n., any of several horselike, African mammals of the genus Equus, having a characteristic pattern of
black or dark-brown stripes on a whitish background.

	Introduction
	Overview
	Zebra Features Overview
	Zebra Document Model
	Zebra Search Features
	Zebra Index Scanning
	Zebra Document Presentation
	Zebra Sorting and Ranking
	Zebra Live Updates
	Zebra Networked Protocols
	Zebra Data Size and Scalability
	Zebra Supported Platforms

	References and Zebra based Applications
	Koha free open-source ILS
	Kete Open Source Digital Library and Archiving software
	ReIndex.Net web based ILS
	DADS - the DTV Article Database Service
	ULS (Union List of Serials)
	Various web indexes

	Support

	Installation
	UNIX
	GNU/Debian
	GNU/Debian Linux on amd64/i386 Platform
	GNU/Debian and Ubuntu on other architectures

	Windows
	Upgrading from Zebra version 1.3.x

	Tutorial
	A first OAI indexing example
	Searching the OAI database by web service
	Presenting search results in different formats
	More interesting searches
	Investigating the content of the indexes
	Setting up a correct SRU web service
	Searching the OAI database by Z39.50 protocol

	Overview of Zebra Architecture
	Local Representation
	Main Components
	Core Zebra Libraries Containing Common Functionality
	Zebra Indexer
	Zebra Searcher/Retriever
	YAZ Server Frontend
	Record Models and Filter Modules
	DOM XML Record Model and Filter Module
	ALVIS XML Record Model and Filter Module
	GRS-1 Record Model and Filter Modules
	TEXT Record Model and Filter Module

	Indexing and Retrieval Workflow
	Retrieval of Zebra internal record data

	Query Model
	Query Model Overview
	Query Languages
	Prefix Query Format (PQF)
	Common Query Language (CQL)

	Operation types
	Explain Operation
	Search Operation
	Scan Operation

	RPN queries and semantics
	RPN tree structure
	Attribute sets
	Boolean operators
	Atomic queries (APT)
	Named Result Sets
	Zebra's special access point of type 'string'
	Zebra's special access point of type 'XPath' for GRS-1 filters

	Explain Attribute Set
	Use Attributes (type = 1)
	Explain searches with yaz-client

	BIB-1 Attribute Set
	Use Attributes (type 1)

	Zebra general Bib1 Non-Use Attributes (type 2-6)
	Relation Attributes (type 2)
	Position Attributes (type 3)
	Structure Attributes (type 4)
	Truncation Attributes (type = 5)
	Completeness Attributes (type = 6)

	Extended Zebra RPN Features
	Zebra specific retrieval of all records
	Zebra specific Search Extensions to all Attribute Sets
	Zebra Extension Embedded Sort Attribute (type 7)
	Zebra Extension Rank Weight Attribute (type 9)
	Zebra Extension Term Reference Attribute (type 10)
	Local Approximative Limit Attribute (type 11)
	Global Approximative Limit Attribute (type 12)

	Zebra specific Scan Extensions to all Attribute Sets
	Zebra Extension Result Set Narrow (type 8)
	Zebra Extension Approximative Limit (type 12)

	Zebra special IDXPATH Attribute Set for GRS-1 indexing
	IDXPATH Use Attributes (type = 1)

	Mapping from PQF atomic APT queries to Zebra internal register indexes
	Mapping of PQF APT access points
	Mapping of PQF APT structure and completeness to register type

	Zebra Regular Expressions in Truncation Attribute (type = 5)

	Server Side CQL to PQF Query Translation

	Administrating Zebra
	Record Types
	The Zebra Configuration File
	Locating Records
	Indexing with no Record IDs (Simple Indexing)
	Indexing with File Record IDs
	Indexing with General Record IDs
	Register Location
	Safe Updating - Using Shadow Registers
	Description
	How to Use Shadow Register Files

	Relevance Ranking and Sorting of Result Sets
	Overview
	Static Ranking
	Dynamic Ranking
	Dynamically ranking using PQF queries with the 'rank-1' algorithm
	Dynamically ranking CQL queries

	Sorting

	Extended Services: Remote Insert, Update and Delete
	Extended services in the Z39.50 protocol
	Extended services from yaz-client
	Extended services from yaz-php
	Extended services debugging guide

	DOM XML Record Model and Filter Module
	DOM Record Filter Architecture
	DOM XML filter pipeline configuration
	Input pipeline
	Extract pipeline
	Store pipeline
	Retrieve pipeline
	Canonical Indexing Format
	Processing-instruction governed indexing format
	Magic element governed indexing format
	Semantics of the indexing formats

	DOM Record Model Configuration
	DOM Indexing Configuration
	DOM Indexing MARCXML
	DOM Indexing Wizardry
	Debuggig DOM Filter Configurations

	ALVIS XML Record Model and Filter Module
	ALVIS Record Filter
	ALVIS Internal Record Representation
	ALVIS Canonical Indexing Format

	ALVIS Record Model Configuration
	ALVIS Indexing Configuration
	ALVIS Exchange Formats
	ALVIS Filter OAI Indexing Example

	GRS-1 Record Model and Filter Modules
	GRS-1 Record Filters
	GRS-1 Canonical Input Format
	Record Root
	Variants

	GRS-1 REGX And TCL Input Filters

	GRS-1 Internal Record Representation
	Tagged Elements
	Variants
	Data Elements

	GRS-1 Record Model Configuration
	The Abstract Syntax
	The Configuration Files
	The Abstract Syntax (.abs) Files
	The Attribute Set (.att) Files
	The Tag Set (.tag) Files
	The Variant Set (.var) Files
	The Element Set (.est) Files
	The Schema Mapping (.map) Files
	The MARC (ISO2709) Representation (.mar) Files

	GRS-1 Exchange Formats
	Extended indexing of MARC records
	The index-formula
	Notation of index-formula for Zebra
	Examples

	Field Structure and Character Sets
	The default.idx file
	Charmap Files
	ICU Chain Files

	Reference
	zebraidx
	zebrasrv
	idzebra-config
	idzebra-abs2dom

	License
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Section 0
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8
	Section 9
	Section 10
	NO WARRANTY Section 11
	Section 12

	How to Apply These Terms to Your New Programs

	About Index Data and the Zebra Server

